Glasnik Matematicki, Vol. 59, No. 2 (2024), 313-325. \( \)
POLYNOMIALS VANISHING ON A BASIS OF \(S_m(\Gamma_0(N))\)
Iva Kodrnja and Helena Koncul
Faculty of Geodesy, University of Zagreb, 10 000 Zagreb, Croatia
e-mail:iva.kodrnja@geof.unizg.hr
Faculty of Civil Engineering, University of Zagreb, 10 000 Zagreb, Croatia
e-mail:helena.koncul@grad.unizg.hr
Abstract.
In this paper we compute the bases of homogeneous polynomials of degree \(d\) such that they vanish on cuspidal modular forms of even weight \(m\geq 4\) that form a basis for \(S_m(\Gamma_0(N))\). Among them we find the irreducible ones.
2020 Mathematics Subject Classification. 11F11, 05E40, 13F20
Key words and phrases. Modular forms, modular curves, projective curves, Hilbert polynomial
Full text (PDF) (access from subscribing institutions only)
https://doi.org/10.3336/gm.59.2.04
References:
-
J. Abbott, A. M. Bigatti and L. Robbiano, CoCoA: a system for doing computations in commutative algebra, .
Link
-
S. Anni, E. Assaf and E. Lorenzo Garcia, On smooth plane models for modular curves of Shimura type, Res. Number Theory 9 (2023), paper 21.
MathSciNet
CrossRef
-
E. Arbarello and E. Sernesi, Petri's Approach to the Study of the Ideal Associated to a Special Divisor, Invent. Math. 49 (1978), 99–119.
MathSciNet
CrossRef
-
E. Arbarello, M. Cornalba, P. A. Griffiths and J. Harris, Geometry of algebraic curves, Vol. 1, Springer-Verlag, New York, 1985.
MathSciNet
CrossRef
-
E. Ballico and F. Orecchia, Computing minimal generators of the ideal of a general projective curve, J. Symbolic Comput. 37 (2004), 295–304.
MathSciNet
CrossRef
-
W. Bruns and J. Herzog, Cohen-Macaulay rings, Cambridge University Press, Cambridge, 1993.
MathSciNet
-
D. A. Cox, J. Little and D. O'Shea, Ideals, varieties, and algorithms, 4th Ed., Springer, Cham, 2015.
MathSciNet
CrossRef
-
F. Diamond and J. Shurman, A first course in modular forms, Springer-Verlag, New York, 2005.
MathSciNet
CrossRef
-
D. Eisenbud and J. Harris, A simpler proof of the Gieseker Petri theorem on special divisors, Invent. Math. 74 (1983), 269–280.
MathSciNet
CrossRef
-
S. Galbraith, Equations for modular curves, Ph.D. thesis, Oxford, 1996.
-
Y. Hasegawa and M. Shimura, Trigonal modular curves, Acta Arith. 88 (1999), 129–140.
MathSciNet
CrossRef
-
R. Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977.
MathSciNet
CrossRef
-
I. Kodrnja and G. Muić, On primitive elements of algebraic function fields and models of \(X_0(N)\), Ramanujan J. 55 (2021), 393–420.
MathSciNet
CrossRef
-
M. Kreuzer and L. Robbiano, Computational commutative algebra 2, Springer-Verlag, Berlin, 2005.
MathSciNet
CrossRef
-
D. Mikoč and G. Muić, On higher order Weierstrass points on \(X_0(N)\) , Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. 28 (2024), 57–70.
MathSciNet
CrossRef
-
R. Miranda, Algebraic curves and Riemann surfaces, American Mathematical Society, Providence, RI, 1995.
MathSciNet
CrossRef
-
T. Miyake, Modular forms, Springer-Verlag, Berlin, 2006.
MathSciNet
-
G. Muić, On embeddings of modular curves in projective spaces, Monatsh. Math. 173 (2014), 239–256.
MathSciNet
CrossRef
-
G. Muić, On degrees and birationality of the maps \(X_0(N)\rightarrow \mathbb P^2\) constructed via modular forms, Monatsh. Math. 180 (2016), 607–629.
MathSciNet
CrossRef
-
OEIS (”The online encyclopedia of integer sequences”).
Link
-
F. Orecchia, The ideal generation conjecture for general rational projective curves, J. Pure Appl. Algebra 155 (2001), 77–89.
MathSciNet
CrossRef
-
SAGE (”Software of algebra and geometry experimentation”) reference manual.
Link -
B. Saint-Donat, On Petri's analysis of the linear system of quadrics through a canonical curve, Math. Ann. 206 (1973), 157–175.
MathSciNet
CrossRef
-
I. R. Shafarevich, Basic algebraic geometry. 1, Springer, Heidelberg, 2013.
MathSciNet
CrossRef
Glasnik Matematicki Home Page