Glasnik Matematicki, Vol. 59, No. 2 (2024), 313-325. \( \)

POLYNOMIALS VANISHING ON A BASIS OF \(S_m(\Gamma_0(N))\)

Iva Kodrnja and Helena Koncul

Faculty of Geodesy, University of Zagreb, 10 000 Zagreb, Croatia
e-mail:iva.kodrnja@geof.unizg.hr

Faculty of Civil Engineering, University of Zagreb, 10 000 Zagreb, Croatia
e-mail:helena.koncul@grad.unizg.hr


Abstract.   In this paper we compute the bases of homogeneous polynomials of degree \(d\) such that they vanish on cuspidal modular forms of even weight \(m\geq 4\) that form a basis for \(S_m(\Gamma_0(N))\). Among them we find the irreducible ones.

2020 Mathematics Subject Classification.   11F11, 05E40, 13F20

Key words and phrases.   Modular forms, modular curves, projective curves, Hilbert polynomial


Full text (PDF) (access from subscribing institutions only)

https://doi.org/10.3336/gm.59.2.04


References:

  1. J. Abbott, A. M. Bigatti and L. Robbiano, CoCoA: a system for doing computations in commutative algebra, .
    Link

  2. S. Anni, E. Assaf and E. Lorenzo Garcia, On smooth plane models for modular curves of Shimura type, Res. Number Theory 9 (2023), paper 21.
    MathSciNet    CrossRef

  3. E. Arbarello and E. Sernesi, Petri's Approach to the Study of the Ideal Associated to a Special Divisor, Invent. Math. 49 (1978), 99–119.
    MathSciNet    CrossRef

  4. E. Arbarello, M. Cornalba, P. A. Griffiths and J. Harris, Geometry of algebraic curves, Vol. 1, Springer-Verlag, New York, 1985.
    MathSciNet    CrossRef

  5. E. Ballico and F. Orecchia, Computing minimal generators of the ideal of a general projective curve, J. Symbolic Comput. 37 (2004), 295–304.
    MathSciNet    CrossRef

  6. W. Bruns and J. Herzog, Cohen-Macaulay rings, Cambridge University Press, Cambridge, 1993.
    MathSciNet

  7. D. A. Cox, J. Little and D. O'Shea, Ideals, varieties, and algorithms, 4th Ed., Springer, Cham, 2015.
    MathSciNet    CrossRef

  8. F. Diamond and J. Shurman, A first course in modular forms, Springer-Verlag, New York, 2005.
    MathSciNet    CrossRef

  9. D. Eisenbud and J. Harris, A simpler proof of the Gieseker Petri theorem on special divisors, Invent. Math. 74 (1983), 269–280.
    MathSciNet    CrossRef

  10. S. Galbraith, Equations for modular curves, Ph.D. thesis, Oxford, 1996.

  11. Y. Hasegawa and M. Shimura, Trigonal modular curves, Acta Arith. 88 (1999), 129–140.
    MathSciNet    CrossRef

  12. R. Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977.
    MathSciNet    CrossRef

  13. I. Kodrnja and G. Muić, On primitive elements of algebraic function fields and models of \(X_0(N)\), Ramanujan J. 55 (2021), 393–420.
    MathSciNet    CrossRef

  14. M. Kreuzer and L. Robbiano, Computational commutative algebra 2, Springer-Verlag, Berlin, 2005.
    MathSciNet    CrossRef

  15. D. Mikoč and G. Muić, On higher order Weierstrass points on \(X_0(N)\) , Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. 28 (2024), 57–70.
    MathSciNet    CrossRef

  16. R. Miranda, Algebraic curves and Riemann surfaces, American Mathematical Society, Providence, RI, 1995.
    MathSciNet    CrossRef

  17. T. Miyake, Modular forms, Springer-Verlag, Berlin, 2006.
    MathSciNet

  18. G. Muić, On embeddings of modular curves in projective spaces, Monatsh. Math. 173 (2014), 239–256.
    MathSciNet    CrossRef

  19. G. Muić, On degrees and birationality of the maps \(X_0(N)\rightarrow \mathbb P^2\) constructed via modular forms, Monatsh. Math. 180 (2016), 607–629.
    MathSciNet    CrossRef

  20. OEIS (”The online encyclopedia of integer sequences”).
    Link

  21. F. Orecchia, The ideal generation conjecture for general rational projective curves, J. Pure Appl. Algebra 155 (2001), 77–89.
    MathSciNet    CrossRef

  22. SAGE (”Software of algebra and geometry experimentation”) reference manual.
    Link

  23. B. Saint-Donat, On Petri's analysis of the linear system of quadrics through a canonical curve, Math. Ann. 206 (1973), 157–175.
    MathSciNet    CrossRef

  24. I. R. Shafarevich, Basic algebraic geometry. 1, Springer, Heidelberg, 2013.
    MathSciNet    CrossRef

Glasnik Matematicki Home Page