Glasnik Matematicki, Vol. 59, No. 2 (2024), 299-312. \( \)
ON A CONJECTURE CONCERNING THE NUMBER OF SOLUTIONS TO \(a^x+b^y=c^z\), II
Maohua Le, Reese Scott and Robert Styer
Institute of Mathematics, Lingnan Normal College, Zhanjiang 524048, Guangdong, China
e-mail:lemaohua2008@163.com
Somerville, MA, USA
Department of Mathematics, Villanova University, Villanova, PA, USA
e-mail:robert.styer@villanova.edu
Abstract.
Let \(a\), \(b\), \(c\) be distinct primes with \(a\lt b\). Let \(N(a,b,c)\) denote the number of positive integer solutions \((x,y,z)\) of the equation \(a^x + b^y = c^z\). In a previous paper [16] it was shown that if \((a,b,c)\) is a triple of distinct primes for which \(N(a,b,c)\gt 1\) and \((a,b,c)\) is not one of the six known such triples then \((a,b,c)\) must be one of three cases. In the present paper, we eliminate two of these cases (using the special properties of certain continued fractions for one of these cases, and using a result of Dirichlet on quartic residues for the other). Then we show that the single remaining case requires severe restrictions, including the following: \(a=2\), \(b \equiv 1 \bmod 48\), \(c \equiv 17 \mod 48\), \(b \gt 10^9\), \(c \gt 10^{18}\); at least one of the multiplicative orders \(u_c(b)\) or \(u_b(c)\) must be odd (where \(u_p(n)\) is the least integer \(t\) such that \(n^t \equiv 1 \bmod p\)); 2 must be an octic residue modulo \(c\) except for one specific case; \(2 \mid v_2(b-1) \le v_2(c-1)\) (where \(v_2(n)\) satisfies \(2^{v_2(n)} \parallel n\)); there must be exactly two solutions \((x_1, y_1, z_1)\) and \((x_2, y_2, z_2)\) with \(1 = z_1 \lt z_2\) and either \(x_1 \ge 28\) or \(x_2 \ge 88\). These results support a conjecture put forward in [28] and improve results in [16].
2020 Mathematics Subject Classification. 11D61
Key words and phrases. Ternary purely exponential Diophantine equation, upper bound for number of solutions
Full text (PDF) (access from subscribing institutions only)
https://doi.org/10.3336/gm.59.2.03
References:
-
L. J. Alex, Diophantine equations related to finite groups, Comm. Algebra 4 (1976), 77–100.
MathSciNet
CrossRef
-
M. Bauer and M. A. Bennett, Applications of the hypergeometric method to the generalized Ramanujan-Nagell equation, Ramanujan J. 6 (2002), 209–270.
MathSciNet
CrossRef
-
M. A. Bennett, On some exponential equations of S. S. Pillai, Canad. J. Math. 53 (2001), 897–922.
MathSciNet
CrossRef
-
M. A. Bennett, Differences between perfect powers, Canad. Math. Bull. 51 (2008), 337–347.
MathSciNet
CrossRef
-
F. Beukers and H. P. Schlickewei, The equation \(x+y=1\) in finitely generated groups, Acta Arith. 78 (1996), 189–199.
MathSciNet
CrossRef
-
J. L. Brenner and L. L. Foster, Exponential Diophantine equations, Pacific J. Math. 101 (1982), 263–301.
MathSciNet
-
G. Lejeune Dirichlet, Ueber den biquadratischen Character der Zahl "Zwei", J. Reine Angew. Math. 57 (1860), 187–188.
MathSciNet
CrossRef
-
A. Gelfond, Sur la divisibilité de la différence des puissances de deux nombres entiers par une puissance d'un idéal premier, Rec. Math. [Mat. Sbornik] N.S. 7(49) (1940), 7–25.
MathSciNet
-
R. K. Guy, Unsolved problems in number theory, Springer-Verlag, New York, 2004.
MathSciNet
CrossRef
-
T. Hadano, On the Diophantine equation \(a^{x}=b^{y}+c^{z}\), Math. J. Okayama Univ. 19 (1976/77), 25–29.
MathSciNet
-
A. Herschfeld, The equation \(2^x-3^y=d\), Bull. Amer. Math. Soc. 42 (1936), 231–234.
MathSciNet
CrossRef
-
Y. Hu and M. Le, An upper bound for the number of solutions of ternary purely exponential diophantine equations, J. Number Theory 183 (2018), 62–73.
MathSciNet
CrossRef
-
Y. Hu and M. Le, An upper bound for the number of solutions of ternary purely exponential Diophantine equations II, Publ. Math. Debrecen 95 (2019), 335–354.
MathSciNet
CrossRef
-
M. H. Le, On the Diophantine equation \(a^x + b^y = c^z\), J. Changchun Teachers College Ser. Nat. Sci. 2 (1985), 50–62 (in Chinese).
-
M. Le, A conjecture concerning the exponential Diophantine equation \(a^x+b^y=c^z\), Acta Arith. 106 (2003), 345–353.
MathSciNet
CrossRef
-
M. Le and R. Styer, On a conjecture concerning the number of solutions to \(a^x+b^y=c^z\), Bull. Aust. Math. Soc. 108 (2023), 40–49.
MathSciNet
CrossRef
-
K. Mahler, Zur Approximation algebraischer Zahlen. I, Math. Ann. 107 (1933), 691–730.
MathSciNet
CrossRef
-
T. Miyazaki and I. Pink, Number of solutions to a special type of unit equations in two variables, Amer. J. Math. 146 (2024), 295–369.
MathSciNet
-
T. Miyazaki and I. Pink, Number of solutions to a special type of unit equations in two variables II, Res. Number Theory 10 (2024), Paper No. 36.
MathSciNet
-
D. Z. Mo and R. Tijdeman, Exponential Diophantine equations with four terms, Indag. Math. (N.S.) 3 (1992), 47–57.
MathSciNet
CrossRef
-
T. Nagell, Introduction to Number Theory, John Wiley & Sons, Inc., New York; Almqvist & Wiksell, Stockholm, 1951.
MathSciNet
-
T. Nagell, Sur une classe d'équations exponentielles, Ark. Mat. 3 (1958), 569–582.
MathSciNet
CrossRef
-
O. Perron, Die Lehre von den Kettenbrüchen, Chelsea Publishing Co., New York, 1950.
MathSciNet
-
R. Scott, On the equations \(p^x-b^y=c\) and \(a^x+b^y=c^z\), J. Number Theory 44 (1993), 153–165.
MathSciNet
CrossRef
-
R. Scott, Elementary treatment of \(p^a \pm p^b + 1=x^2\), (2006), arxiv:math.0608796.
Link
-
R. Scott and R. Styer, On \(p^x-q^y=c\) and related three term exponential Diophantine equations with prime bases, J. Number Theory 105 (2004), 212–234.
MathSciNet
CrossRef
-
R. Scott and R. Styer, On the generalized Pillai equation \(\pm a^x\pm b^y=c\), J. Number Theory 118 (2006), 236–265.
MathSciNet
CrossRef
-
R. Scott and R. Styer, Number of solutions to \(a^x+b^y=c^z\), Publ. Math. Debrecen 88 (2016), 131–138.
MathSciNet
CrossRef
-
C. G. Reuschle, Mathematische Abhandlung, enthaltend neue Zahlentheoretische Tabellen, Programm zum Schlusse des Schuljahrs 1855–56 am Königlichen Gymnasium zu Stuttgart, (1856), 61 pp.
-
S. Uchiyama, On the Diophantine equation \(2^{x}=3^{y}+13^{z}\), Math. J. Okayama Univ. 19 (1976/77), 31–38.
MathSciNet
-
B. M. M. de Weger, Solving exponential Diophantine equations using lattice basis reduction algorithms, J. Number Theory 26 (1987), 325–367.
MathSciNet
CrossRef
-
A. E. Western, Some criteria for the residues of eighth and other powers, Proc. London Math. Soc. (2) 9 (1911), 244–272.
MathSciNet
CrossRef
-
A. L. Whiteman, The sixteenth power residue character of \(2\), Canad. J. Math. 6 (1954), 364–373.
MathSciNet
CrossRef
Glasnik Matematicki Home Page