Glasnik Matematicki, Vol. 59, No. 2 (2024), 259-276. \( \)
DIOPHANTINE \(D(n)\)-QUADRUPLES IN \(\mathbb{Z}[\sqrt{4k + 2}]\)
Kalyan Chakraborty, Shubham Gupta and Azizul Hoque
Department of Mathematics, SRM University AP, Neerukonda, Mangalagiri, Guntur-522240, Andhra Pradesh, India
e-mail:kalychak@gmail.com & kalyan.c@srmap.edu.in
Harish-Chandra Research Institute, A CI of Homi Bhabha National Institute, Chhatnag Road, Jhunsi, Prayagraj - 211019, India
e-mail:shubhamgupta2587@gmail.com
Department of Mathematics, Faculty of Science, Rangapara College, Rangapara, Sonitpur-784505, Assam, India
e-mail:ahoque.ms@gmail.com
Abstract.
Let \(d\) be a square-free integer and \(\mathbb{Z}[\sqrt{d}]\) a quadratic ring of integers. For a given \(n\in\mathbb{Z}[\sqrt{d}]\), a set of \(m\) non-zero distinct elements in \(\mathbb{Z}[\sqrt{d}]\) is called a Diophantine \(D(n)\)-\(m\)-tuple (or simply \(D(n)\)-\(m\)-tuple) in \(\mathbb{Z}[\sqrt{d}]\) if product of any two of them plus \(n\) is a square in \(\mathbb{Z}[\sqrt{d}]\). Assume that \(d \equiv 2 \pmod 4\) is a positive integer such that \(x^2 - dy^2 = -1\) and \(x^2 - dy^2 = 6\) are solvable in integers. In this paper, we prove the existence of infinitely many \(D(n)\)-quadruples in \(\mathbb{Z}[\sqrt{d}]\) for \(n = 4m + 4k\sqrt{d}\) with \(m, k \in \mathbb{Z}\) satisfying \(m \not\equiv 5 \pmod{6}\) and \(k \not\equiv 3 \pmod{6}\). Moreover, we prove the same for \(n = (4m + 2) + 4k\sqrt{d}\) when either \(m \not\equiv 9 \pmod{12}\) and \(k \not\equiv 3 \pmod{6}\), or \(m \not\equiv 0 \pmod{12}\) and \(k \not\equiv 0 \pmod{6}\). At the end, some examples supporting the existence of quadruples in \(\mathbb{Z}[\sqrt{d}]\) with the property \(D(n)\) for the above exceptional \(n\)'s are provided for \(d = 10\).
2020 Mathematics Subject Classification. 11D09, 11R11
Key words and phrases. Diophantine quadruples, Pellian equations, quadratic fields
Full text (PDF) (access from subscribing institutions only)
https://doi.org/10.3336/gm.59.2.01
References:
-
F. S. Abu Muriefah and A. Al Rashed, Some Diophantine quadruples in the ring \(\mathbb{Z}[\sqrt{-2}]\), Math. Commun. 9 (2004), 1–8.
MathSciNet
Link
-
N. Adžaga, On the size of Diophantine \(m\)-tuples in imaginary quadratic number rings, Bull. Math. Sci. 11 (2021), Article ID: 1950020, 10pp.
MathSciNet
CrossRef
-
A. Baker and H. Davenport, The equations \(3x^2 - 2 = y^2\) and \(8x^2 - 7 = z^2\), Quart. J. Math. Oxford Ser. (2) 20 (1969), 129–137.
MathSciNet
CrossRef
-
M. Bliznac Trebješanin and A. Filipin, Nonexistence of \(D(4)\)-quintuples, J. Number Theory 194 (2019), 170–217.
MathSciNet
CrossRef
-
N. C. Bonciocat, M. Cipu and M. Mignotte, There is no Diophantine \(D(-1)\)-quadruple, J. London Math. Soc. (2) 105 (2022), 63–99.
MathSciNet
CrossRef
-
E. Brown, Sets in which \(xy + k\) is always a square, Math. Comp. 45 (1985), 613–620.
MathSciNet
CrossRef
-
K. Chakraborty, S. Gupta, and A. Hoque, On a conjecture of Franušić and Jadrijević: counter-examples, Results Math. 78 (2023), article no. 18, 14pp.
MathSciNet
CrossRef
-
K. Chakraborty, S. Gupta and A. Hoque, Diophantine triples with the property \(D(n)\) for distinct \(n\)'s, Mediterr. J. Math. 20 (2023), article no. 31, 13pp.
MathSciNet
CrossRef
-
A. Dujella, Generalization of a problem of Diophantus, Acta Arith. 65 (1993), 15–27.
MathSciNet
CrossRef
-
A. Dujella, Some polynomial formulas for Diophantine quadruples, Grazer Math. Ber. 328 (1996), 25–30.
MathSciNet
-
A. Dujella, The problem of Diophantus and Davenport for Gaussian integers, Glas. Mat. Ser. III 32 (1997), 1–10.
MathSciNet
-
A. Dujella, There are only finitely many Diophantine quintuples, J. Reine Angew. Math. 566 (2004), 183–214.
MathSciNet
CrossRef
-
A. Dujella, Number theory, Školska knjiga, Zagreb, 2021.
MathSciNet
Link
-
A. Dujella, Diophantine \(m\)-tuples and elliptic curves, Springer, Cham, 2024.
MathSciNet
CrossRef
-
A. Dujella, Triples, quadruples and quintuples which are \(D(n)\)-sets for several \(n\)'s, in: Class groups of number fields and related topics (K. Chakraborty, A. Hoque and P. P. Pandey, Eds.), Springer, Cham, 2024, 77–92.
CrossRef
-
C. Elsholz, A. Filipin and Y. Fujita, On Diophantine quintuples and \(D(-1)\)-quadruples, Monats. Math. 175 (2014), 227–239.
MathSciNet
CrossRef
-
Z. Franušić, Diophantine quadruples in the ring \(\mathbb{Z}[\sqrt{2}]\), Math. Commun. 9 (2004), 141–148.
MathSciNet
Link
-
Z. Franušić, Diophantine quadruples in \(\mathbb{Z}[\sqrt{4k + 3}]\), Ramanujan J. 17 (2008), 77–88.
MathSciNet
CrossRef
-
Z. Franušić, A Diophantine problem in \(\mathbb{Z}[\sqrt{(1 + d)/2}]\), Studia Sci. Math. Hungar. 46 (2009), 103–112.
MathSciNet
CrossRef
-
Z. Franušić, Diophantine quadruples in the ring of integers of the pure cubic field \(\mathbb{Q}(\sqrt[3]{2})\), Miskolc Math. Notes 14 (2013), 893–903.
MathSciNet
CrossRef
-
Z. Franušić and I. Soldo, The problem of Diophantus for integers of \(\mathbb{Q}(\sqrt{-3})\), Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. 18 (2014), 15–25.
MathSciNet
Link
-
Z. Franušić and B. Jadrijević, \(D(n)\)-quadruples in the ring of integers of \(\mathbb{Q}(\sqrt{2}, \sqrt{3})\), Math. Slovaca 69 (2019), 1263–1278.
MathSciNet
CrossRef
-
S. Gupta, \(D(-1)\) tuples in imaginary quadratic fields, Acta Math. Hungar. 164 (2021), 556–569.
MathSciNet
CrossRef
-
B. He, A. Togbé and V. Ziegler, There is no Diophantine quintuple, Trans. Amer. Math. Soc. 371 (2019), 6665–6709.
MathSciNet
CrossRef
-
Lj. Jukić Matić, Non-existence of certain Diophantine quadruples in rings of integers of pure cubic fields, Proc. Japan Acad. Ser. A Math. Sci. 88 (2012), 163–167.
MathSciNet
CrossRef
-
I. Soldo, On the existence of Diophantine quadruples in \(\mathbb{Z}[\sqrt{-2}]\), Miskolc Math. Notes 14 (2013), 265–277.
MathSciNet
CrossRef
Glasnik Matematicki Home Page