Glasnik Matematicki, Vol. 59, No. 1 (2024), 193-212. \( \)

MARKOV SET-VALUED FUNCTIONS ON COMPACT METRIC SPACES

Iztok Banič, Matevž Črepnjak and Teja Kac

(1) Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška 160, SI-2000 Maribor, Slovenia, (2) Institute of Mathematics, Physics and Mechanics, Jadranska 19, SI-1000 Ljubljana, Slovenia, (3) Andrej Marušič Institute, University of Primorska, Muzejski trg 2, SI-6000 Koper, Slovenia
e-mail:iztok.banic@um.si

(1) Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška 160, SI-2000 Maribor, Slovenia, (2) Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova 17, SI-2000 Maribor, Slovenia
e-mail:matevz.crepnjak@um.si

Faculty of Natural Sciences and Mathematics, University of Maribor, Koroška 160, SI-2000 Maribor, Slovenia
e-mail:teja.kac1@um.si


Abstract.   We generalize the notion of Markov functions on closed intervals \([a,b]\) to Markov set-valued functions on compact metric spaces. We also introduce when two such Markov set-valued functions follow the same pattern and show that if the Markov set-valued functions \(F:X\multimap X\) and \(G:Y\multimap Y\) follow the same pattern, then the inverse limits \(\lim_{{\multimap}}(X,F)\) and \(\lim_{\multimap}(Y,G)\) are homeomorphic.

2020 Mathematics Subject Classification.   54F17, 54C60, 54E45

Key words and phrases.   Markov set-valued function, inverse limit, upper semicontinuos function, compact metric space


Full text (PDF) (access from subscribing institutions only)

https://doi.org/10.3336/gm.59.1.09


References:

  1. E. Akin, General topology of dynamical systems, Volume 1, American Mathematical Society, Providence, 1993.
    MathSciNet    CrossRef

  2. L. Alvin and J. Kelly, Markov set-valued functions and their inverse limits, Topology Appl. 241 (2018), 102–114.
    MathSciNet    CrossRef

  3. I. Banič and T. Lunder, Inverse limits with generalized Markov interval functions, Bull. Malays. Math. Sci. Soc. 39 (2016), 839–848.
    MathSciNet    CrossRef

  4. K. Brucks and H. Bruin, Topics from one-dimensional dynamics, Cambridge University Press, Cambridge, 2004.
    MathSciNet    CrossRef

  5. I. Banič and M. Črepnjak, Markov pairs, quasi Markov functions and inverse limits, Houston J. Math. 44 (2018), 695–707.
    MathSciNet    CrossRef

  6. M. Črepnjak and T. Kac, Inverse limits with Markov-type functions, Bull. Malays. Math. Sci. Soc. 45 (2022), 2161–2164.
    MathSciNet    CrossRef

  7. M. Črepnjak and T. Lunder, Inverse limits with countably Markov interval functions, Glas. Mat. Ser. III 51(71) (2016), 491–501.
    MathSciNet    CrossRef

  8. S. Holte, Inverse limits of Markov interval maps, Topology Appl. 123 (2002), 421–427.
    MathSciNet    CrossRef

  9. H. Imamura, Markov-like set-valued functions on intervals and their inverse limits, Glas. Mat. Ser. III 53(73) (2018), 385–401.
    MathSciNet    CrossRef

  10. H. Imamura, Markov-like set-valued functions on finite graphs and their inverse limits, Topology Appl. 264 (2019), 175–186.
    MathSciNet    CrossRef

  11. W. T. Ingram, Introduction to inverse limits with set-valued functions, Springer, New York, 2012.
    MathSciNet    CrossRef

  12. J. A. Kennedy and V. Nall, Dynamical properties of shift maps on Inverse limits with a set valued map, Ergodic Theory Dynam. Systems 38 (2018), 1499–1524.
    MathSciNet    CrossRef

  13. D. Lind and B. Marcus, An introduction to symbolic dynamics and coding, Cambridge University Press, Cambridge, 1995.
    MathSciNet    CrossRef

  14. A. Loranty and R. J. Pawlak, On the transitivity of multifunctions and density of orbits in generalized topological spaces, Acta Math. Hungar. 135 (2012), 56–66.
    MathSciNet    CrossRef

  15. J. Li, K. Yan and X. Ye, Recurrence properties and disjointness on the induced spaces, Discrete Contin. Dyn. Syst. 35 (2015), 1059–1073.
    MathSciNet    CrossRef

  16. G. Liao, L. Wang and Y. Zhang, Transitivity, mixing and chaos for a class of set-valued mappings, Sci. China Ser. A 49 (2006), 1–8.
    MathSciNet    CrossRef

  17. S. B. Nadler, Continuum theory. An introduction, Marcel Dekker, Inc., New York, 1992.
    MathSciNet

  18. R. Metzger, C. A. Morales Rojas and P. Thieullen, Topological stability in set-valued dynamics, Discrete Contin. Dyn. Syst. Ser. B 22 (2017), 1965–1975.
    MathSciNet    CrossRef

Glasnik Matematicki Home Page