Glasnik Matematicki, Vol. 59, No. 1 (2024), 1-31. \( \)

POLYNOMIAL \(D(4)\)-QUADRUPLES OVER GAUSSIAN INTEGERS

Marija Bliznac Trebješanin and Sanda Bujačić Babić

Faculty of Science, University of Split, Ruđera Boškovića 33, 21 000 Split, Croatia
e-mail:marbli@pmfst.hr

Faculty of Mathematics, University of Rijeka, Radmile Matejčić 2, 51 000 Rijeka, Croatia
e-mail:sbujacic@math.uniri.hr


Abstract.   A set \(\{a, b, c, d\}\) of four non-zero distinct polynomials in \(\mathbb{Z}[i][X]\) is said to be a Diophantine \(D(4)\)-quadruple if the product of any two of its distinct elements increased by 4 is a square of some polynomial in \(\mathbb{Z}[i][X]\). In this paper we prove that every \(D(4)\)-quadruple in \(\mathbb{Z}[i][X]\) is regular, or equivalently that the equation \[ (a+b-c-d)^2=(ab+4)(cd+4)\hspace{20ex} \] holds for every \(D(4)\)-quadruple in \(\mathbb{Z}[i][X]\).

2020 Mathematics Subject Classification.   11D09, 11D45

Key words and phrases.   Diophantine \(m\)-tuples, polynomials, regular quadruples


Full text (PDF) (access from subscribing institutions only)

https://doi.org/10.3336/gm.59.1.01


References:

  1. M. Bliznac Trebješanin, A. Filipin and A. Jurasić, On the polynomial quadruples with the property \(D(-1;1)\), Tokyo J. Math. 41 (2018), 527–540.
    MathSciNet    CrossRef

  2. M. Bliznac Trebješanin, Extension of a Diophantine triple with the property \(D(4)\), Acta Math. Hungar. 163 (2021), 213–246.
    MathSciNet    CrossRef

  3. N. C. Bonciocat, M. Cipu and M. Mignotte, There is no Diophantine \(D(-1)\)-quadruple, J. Lond. Math. Soc. (2) 105 (2022), 63–99.
    MathSciNet    CrossRef

  4. A. Dujella, Generalization of a problem of Diophantus, Acta Arith. 65 (1993), 15–27.
    MathSciNet    CrossRef

  5. A. Dujella and C. Fuchs, Complete solution of the polynomial version of a problem of Diophantus, J. Number Theory 106 (2004), 326–344.
    MathSciNet    CrossRef

  6. A. Dujella and C. Fuchs, Complete solution of a problem of Diophantus and Euler, J. London Math. Soc. (2) 71 (2005), 33–52.
    MathSciNet    CrossRef

  7. A. Dujella, C. Fuchs and F. Luca, A polynomial variant of a problem of Diophantus for pure powers, Int. J. Number Theory 4 (2008), 57–71.
    MathSciNet    CrossRef

  8. A. Dujella, C. Fuchs and R. F. Tichy, Diophantine \(m\)-tuples for linear polynomials, Period. Math. Hungar. 45 (2002), 21–33.
    MathSciNet    CrossRef

  9. A. Dujella and A. Jurasić, On the size of sets in a polynomial variant of a problem of Diophantus, Int. J. Number Theory 6 (2010), 1449–1471.
    MathSciNet    CrossRef

  10. A. Dujella and F. Luca, On a problem of Diophantus with polynomials, Rocky Mountain J. Math. 37 (2007), 131–157.
    MathSciNet    CrossRef

  11. A. Filipin and Y. Fujita, Any polynomial \(D(4)\)-quadruple is regular, Math. Commun. 13 (2008), 45–55.
    MathSciNet

  12. A. Filipin and A. Jurasić, A polynomial variant of a problem of Diophantus and its consequences, Glas. Mat. Ser. III 54(74) (2019), 21–52.
    MathSciNet    CrossRef

  13. A. Filipin and A. Jurasić, Diophantine quadruples in \(\Bbb Z[i][X]\), Period. Math. Hungar. 82 (2021), 198–212.
    MathSciNet    CrossRef

  14. B. W. Jones, A second variation of a problem of Davenport and Diophantus, Fibonacci Quart. 16 (1977), 155–165.
    MathSciNet

  15. B. W. Jones, A variation on a problem of Davenport and Diophantus, Quart. J. Math. Oxford Ser. (2) 27 (1976), 349–353.
    MathSciNet    CrossRef

Glasnik Matematicki Home Page