Glasnik Matematicki, Vol. 56, No. 2 (2021), 329-341. \( \)
CONTINUITY OF GENERALIZED RIESZ POTENTIALS FOR DOUBLE PHASE FUNCTIONALS WITH VARIABLE EXPONENTS
Takao Ohno and Tetsu Shimomura
Faculty of Education, Oita University, Dannoharu Oita-city 870-1192, Japan
e-mail:t-ohno@oita-u.ac.jp
Department of Mathematics, Graduate School of Humanities and Social Sciences, Hiroshima University, Higashi-Hiroshima 739-8524, Japan
e-mail:tshimo@hiroshima-u.ac.jp
Abstract.
In this note, we discuss the continuity of generalized Riesz potentials \( I_{\rho}f\) of functions in Morrey spaces \(L^{\Phi,\nu(\cdot)}(G)\) of double phase functionals with variable exponents.
2020 Mathematics Subject Classification. 31B15, 46E35
Key words and phrases. Riesz potentials, Morrey spaces, double phase functionals, continuity
Full text (PDF) (free access)
https://doi.org/10.3336/gm.56.2.07
References:
-
P. Baroni, M. Colombo and G. Mingione, Regularity for general functionals with double phase, Calc. Var. Partial Differential Equations 57 (2018), 761–777.
MathSciNet
CrossRef
-
S. S. Byun, S. Liang and S. Zheng, Nonlinear gradient estimates for double phase elliptic problems with irregular double obstacles, Proc. Amer. Math. Soc. 147 (2019), 3839–3854.
MathSciNet
CrossRef
-
S. S. Byun and H.-S. Lee, Calderón-Zygmund estimates for elliptic double phase problems with variable exponents, J. Math. Anal. Appl. 501 (2021), 124015.
MathSciNet
CrossRef
-
M. Colombo and G. Mingione, Regularity for double phase variational problems, Arch. Rat. Mech. Anal. 215 (2015), 443–496.
MathSciNet
CrossRef
-
M. Colombo and G. Mingione, Bounded minimisers of double phase variational integrals, Arch. Ration. Mech. Anal. 218 (2015), 219–273.
MathSciNet
CrossRef
-
Eridani, H. Gunawan, E. Nakai and Y. Sawano, Characterizations for the generalized fractional integral operators on Morrey spaces, Math. Ineq. Appl. 17 (2014), 761–777.
MathSciNet
CrossRef
-
C. De Filippis and G. Mingione, Manifold constrained non-uniformly elliptic problems, J. Geom. Anal. 30 (2020), no. 2, 1661–1723.
MathSciNet
CrossRef
-
P. Hästö and J. Ok, Maximal regularity for local minimizers of non-autonomous functionals, to appear in J. Eur. Math. Soc.
Link
-
F.-Y. Maeda, Y. Mizuta, T. Ohno and T. Shimomura, Boundedness of maximal operators and Sobolev's inequality on Musielak-Orlicz-Morrey spaces, Bull. Sci. Math., 137 (2013), 76–96.
MathSciNet
CrossRef
-
F.-Y. Maeda, Y. Mizuta, T. Ohno and T. Shimomura, Sobolev's inequality for double phase functionals with variable exponents, Forum Math. 31 (2019), 517–527.
MathSciNet
CrossRef
-
F.-Y. Maeda, Y. Mizuta, T. Ohno and T. Shimomura, Trudinger's inequality for double phase functionals with variable exponents, Czechoslovak Math. J. 71 (2021), 511–528.
MathSciNet
CrossRef
-
Y. Mizuta, E. Nakai, T. Ohno and T. Shimomura, Campanato-Morrey spaces for the double phase functionals, Rev. Mat. Complut. 33 (2020), 817–834.
MathSciNet
CrossRef
-
Y. Mizuta, E. Nakai, T. Ohno and T. Shimomura, Campanato-Morrey spaces for the double phase functionals with variable exponents, Nonlinear Anal. 197 (2020), article no. 111827, 19 pp.
MathSciNet
CrossRef
-
Y. Mizuta, E. Nakai, T. Ohno and T. Shimomura, Riesz potentials and Sobolev embeddings on Morrey spaces of variable exponent, Complex Var. Elliptic Equ. 56, (2011), 671–695.
MathSciNet
CrossRef
-
Y. Mizuta, E. Nakai, Y. Sawano and T. Shimomura, Gagliardo-Nirenberg inequality for generalized Riesz potentials of functions in Orlicz-Musielak spaces, Arch. Math. 98 (2012), 253–263.
MathSciNet
CrossRef
-
Y. Mizuta, T. Ohno and T. Shimomura, Sobolev's theorem for double phase functionals, Math. Ineq. Appl. 23 (2020), 17–33.
MathSciNet
CrossRef
-
Y. Mizuta and T. Shimomura, Differentiability and Hölder continuity of Riesz potentials of Orlicz functions, Analysis (Munich) 20 (2000), 201–223.
MathSciNet
CrossRef
-
C. B. Morrey, On the solutions of quasi-linear elliptic partial differential equations, Trans. Amer. Math. Soc. 43 (1938), 126–166.
MathSciNet
CrossRef
-
J. Musielak, Orlicz spaces and modular spaces, Lecture Notes in Math. 1034, Springer-Verlag Berlin Heidelberg, 1983.
-
S. Nagayasu and H. Wadade, Characterization of the critical Sobolev space on the optimal singularity at the origin, J. Funct. Anal. 258 (2010), 3725–3757.
MathSciNet
CrossRef
-
E. Nakai, On generalized fractional integrals, Taiwan. J. Math. 5 (2001), 587–602.
MathSciNet
CrossRef
-
A. Ourraoui and M. A. Ragusa, An existence result for a class of \(p(x)\)-anisotropic type equations, Symmetry 13 (2021), 633.
-
C. Peréz, Sharp \(L^p\)-weighted Sobolev inequalities, Ann. Inst. Fourier (Grenoble) 45 (1995), 809–824.
MathSciNet
Link
-
E. Pustylnik, Generalized potential type operators on rearrangement invariant spaces, Israel Math. Conf. Proc. 13 (1999), 161–171.
MathSciNet
-
M. A. Ragusa and A. Tachikawa, Regularity for minimizers for functionals of double phase with variable exponents, Adv. Nonlinear Anal. 9 (2020), 710–728.
MathSciNet
CrossRef
-
Y. Sawano and T. Shimomura, Boundedness of the generalized fractional integral operators on generalized Morrey spaces over metric measure spaces, Z. Anal. Anwend. 36 (2017), 159–190.
MathSciNet
CrossRef
-
Y. Sawano, S. Sugano and H. Tanaka, Orlicz-Morrey spaces and fractional operators, Potential Anal. 36 (2012), 517–556.
MathSciNet
CrossRef
-
T. Shimomura and Y. Mizuta, Taylor expansion of Riesz potentials, Hiroshima Math. J. 25 (1995), 595–621.
MathSciNet
Link
-
A. Tachikawa, Boundary regularity of minimizers of double phase functionals, J. Math. Anal. Appl. 501 (2021), 123946, 34 pp.
MathSciNet
CrossRef
-
V. V. Zhikov, Averaging of functionals of the calculus of variations and elasticity theory, Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986), 675–710.
MathSciNet
Glasnik Matematicki Home Page