Glasnik Matematicki, Vol. 56, No. 2 (2021), 241-261. \( \)
A REMARK ON FLAT TERNARY CYCLOTOMIC POLYNOMIALS
Bin Zhang
School of Mathematical Sciences, Qufu Normal University, 273165 Qufu, P. R. China
e-mail:zhangbin100902025@163.com
Abstract.
Let \(\Phi_n(x)\) be the \(n\)-th cyclotomic
polynomial. In this paper, for odd primes \(p\lt q \lt r\)
with \(q\equiv \pm1\pmod p\) and \(8r\equiv \pm1\pmod {pq}\), we
prove that the coefficients of \(\Phi_{pqr}(x)\) do not exceed \(1\) in modulus if and only if
(i) \(p=3\), \(q\geq 19\) and \(q\equiv 1\pmod 3\) or
(ii) \(p=7\), \(q\geq83\) and \(q\equiv -1\pmod 7\).
2020 Mathematics Subject Classification. 11B83, 11C08, 11N56
Key words and phrases. Flat cyclotomic polynomial, ternary cyclotomic polynomial, coefficients of cyclotomic polynomial
Full text (PDF) (free access)
https://doi.org/10.3336/gm.56.2.03
References:
-
A. Arnold and M. Monagan, Data on the height and lengths of cyclotomic polynomials.
Link -
G. Bachman, Flat cyclotomic polynomials of order three, Bull. London Math. Soc. 38 (2006), 53–60.
MathSciNet
CrossRef
-
G. Bachman and P. Moree, On a class of inclusion-exclusion polynomials, Integers 11 (2011), A8.
MathSciNet
CrossRef
-
M. Beiter, Coefficients of the cyclotomic polynomial \(F_{3qr}(x)\), Fibonacci Quart. 16 (1978), 302–306.
MathSciNet
-
L. Carlitz, The number of terms in the cyclotomic polynomial \(F_{pq}(x)\), Amer. Math. Monthly 73 (1966), 979–981.
MathSciNet
CrossRef
-
S. Elder, Flat cyclotomic polynomials: a new approach, arXiv:1207.5811v1 (2012).
-
G. B. Imhoff, On the coefficients of cyclotomic polynomials, MS Thesis, California State University, 2013.
-
C. G. Ji, A specific family of cyclotomic polynomials of order three, Sci. China Math. 53 (2010), 2269–2274.
MathSciNet
CrossRef
-
N. Kaplan, Flat cyclotomic polynomials of order three, J. Number Theory 127 (2007), 118–126.
MathSciNet
CrossRef
-
T. Y. Lam and K. H. Leung, On the cyclotomic polynomial \(\Phi_{pq}(X)\), Amer. Math. Monthly 103 (1996), 562–564.
MathSciNet
CrossRef
-
H. W. Lenstra, Vanishing sums of roots of unity, in: Proceedings, Bicentennial Congress, Wiskundig Genootschap, Part II, Math. Centrum, Amsterdam, 1979, 249–268.
MathSciNet
-
A. Migotti, Zur Theorie der Kreisteilungsgleichung, Sitzber. Math.-Naturwiss. Classe der Kaiser. Akad. der Wiss. (1883), 7–14.
-
R. Thangadurai, On the coefficients of cyclotomic polynomials, in: Cyclotomic fields and related topics, Bhaskaracharya Pratishthana, Pune, 2000, 311–322.
MathSciNet
-
B. Zhang and Y. Zhou, On a class of ternary cyclotomic polynomials, Bull. Korean Math. Soc. 52 (2015), 1911–1924.
MathSciNet
CrossRef
-
B. Zhang, Remarks on the flatness of ternary cyclotomic polynomials, Int. J. Number Theory 13 (2017), 529–547.
MathSciNet
CrossRef
-
B. Zhang, The flatness of a class of ternary cyclotomic polynomials, Publ. Math. Debrecen 97 (2020), 201–216.
MathSciNet
CrossRef
-
B. Zhang, The flatness of ternary cyclotomic polynomials, Rend. Sem. Mat. Univ. Padova 145 (2021), 1–42.
MathSciNet
CrossRef
-
J. Zhao and X. K. Zhang, Coefficients of ternary cyclotomic polynomials, J. Number Theory 130 (2010), 2223–2237.
MathSciNet
CrossRef
Glasnik Matematicki Home Page