Glasnik Matematicki, Vol. 56, No. 1 (2021), 1-15.

SYMMETRIC 1-DESIGNS FROM PGL2(Q), FOR Q AN ODD PRIME POWER

Xavier Mbaale and Bernardo Gabriel Rodrigues

School of Mathematics, Statistics and Computer Science , University of KwaZulu-Natal , Durban 4000, South Africa
e-mail: xavier@aims.ac.za

Department of Mathematics and Applied Mathematics, University of Pretoria, Hatfield 0028, South Africa
e-mail: bernardo.rodrigues@up.ac.za


Abstract.   All non-trivial point and block-primitive 1-(v, k, k) designs 𝓓 that admit the group G = PGL2(q), where q is a power of an odd prime, as a permutation group of automorphisms are determined. These self-dual and symmetric 1-designs are constructed by defining { |M|/|M ∩ Mg|: g ∈ G } to be the set of orbit lengths of the primitive action of G on the conjugates of M.

2010 Mathematics Subject Classification.   05E20, 05E30, 94B05

Key words and phrases.   Symmetric designs, linear code, projective general linear group


Full text (PDF) (access from subscribing institutions only)

https://doi.org/10.3336/gm.56.1.01


References:

  1. S. M. J. Amiri, Maximum sum element orders of all proper subgroups of PGL2(q), Bull. Iranian Math. Soc. 39 (2013), 501-505.
    MathSciNet    

  2. E. F. Assmus, Jr and J. D. Key, Designs and their codes, Cambridge University Press, Cambridge, 1992.
    MathSciNet     CrossRef

  3. A. Borovik and S. Yal\cc\i nkaya, Construction of some subgroups in black box groups PGL2(q) and PSL2(q), arXiv:1403.2224v1, (2014).
    https://arxiv.org/abs/1403.2224.

  4. P. J. Cameron, G. R. Omidi and B. Tayfeh-Rezaie, 3-Designs from PGL2(q), The Electron. J. Combin. 13 (2006), #R50, 11 pp.

  5. D. Crnković and V. Mikulić, Unitals, projective planes and other combinatorial structures constructed from the unitary groups U3(q), q=3,4,5,7, Ars Combin. 110 (2013), 3-13.
    MathSciNet    

  6. D. Crnković, V. Mikulić and B. G. Rodrigues, Designs, strongly regular graphs and codes constructed from some primitive groups, in: Information security, coding theory and related combinatorics, IOS Press, Amsterdam, 2011, pages 231-252.
    MathSciNet    

  7. M. R. Darafsheh, Designs from the group PSL2(q), q even, Des. Codes Cryptogr. 39 (2006), 311-316.
    MathSciNet     CrossRef

  8. L. E. Dickson, Linear groups with an exposition of the Galois field theory, Dover Publications, Inc., New York, 1958.
    MathSciNet    

  9. J. D. Dixon and B. Mortimer, Permutation groups, Springer-Verlag New York Inc., 1996.
    MathSciNet     CrossRef

  10. T. Fritzsche, The depth of subgroups of PSL2(q) II, J. Algebra 381 (2013), 37-53.
    MathSciNet     CrossRef

  11. M. Giudici, Maximal subgroups of almost simple groups with socle PSL2(q).
    https://arxiv.org/abs/math/0703685.

  12. J. D. Key and J. Moori, Codes, designs and graphs from the Janko groups J1 and J2, J. Combin. Math. Combin. Comput. 40 (2002), 143-159.
    MathSciNet    

  13. J. D. Key and J. Moori, Correction to ``Codes, designs and graphs from the Janko groups J1 and J2", J. Combin. Math. Combin. Comput. 40 (2002), 143-159, J. Combin. Math. Combin. Comput. 64 (2008), 153.
    MathSciNet    

  14. J. D. Key, J. Moori and B. G. Rodrigues, Permutation decoding for the binary codes from triangular graphs, European J. Combin. 25 (2004), 113-123.
    MathSciNet     CrossRef

  15. O. H. King, The subgroup structure of finite classical groups in terms of geometric configurations, in: Surveys in combinatorics 2005, Cambridge Univ. Press, Cambridge, 2005, 29-56.
    MathSciNet     CrossRef

  16. X. Mbaale and B. G. Rodrigues, Symmetric 1-designs from PSL2(q), for q a power of an odd prime, submitted.

  17. J. Moori, Finite groups, designs and codes, in: Information security, coding theory and related combinatorics, IOS Press, Amsterdam, 2011, 202-230.
    MathSciNet    

  18. J. Moori and A. Saeidi, Some designs invariant under the Suzuki groups, Util. Math. 109 (2018), 105-114.
    MathSciNet    

  19. J. Moori and A. Saeidi, Constructing some designs invariant under PSL2(q), q even, Commun. Algebra 46 (2018), 160-166.
    MathSciNet     CrossRef

  20. R. A. Wilson, The finite simple groups, Springer-Verlag London Ltd., London, 2009.
    MathSciNet     CrossRef

Glasnik Matematicki Home Page