Glasnik Matematicki, Vol. 56, No. 1 (2021), 1-15.
SYMMETRIC 1-DESIGNS FROM PGL2(Q), FOR Q AN ODD PRIME POWER
Xavier Mbaale and Bernardo Gabriel Rodrigues
School of Mathematics, Statistics and Computer Science , University of KwaZulu-Natal , Durban 4000, South Africa
e-mail: xavier@aims.ac.za
Department of Mathematics and Applied Mathematics, University of Pretoria, Hatfield 0028, South Africa
e-mail: bernardo.rodrigues@up.ac.za
Abstract.
All non-trivial point and block-primitive 1-(v, k, k) designs 𝓓 that admit the group G = PGL2(q), where q is a power of an odd prime, as a permutation group of automorphisms are determined. These self-dual and symmetric 1-designs are constructed by defining { |M|/|M ∩ Mg|: g ∈ G } to be the set of orbit lengths of the primitive action of G on the conjugates of M.
2010 Mathematics Subject Classification. 05E20, 05E30, 94B05
Key words and phrases. Symmetric designs, linear code, projective general linear group
Full text (PDF) (free access)
https://doi.org/10.3336/gm.56.1.01
References:
-
S. M. J. Amiri,
Maximum sum element orders of all proper subgroups of PGL2(q),
Bull. Iranian Math. Soc. 39 (2013), 501-505.
MathSciNet
-
E. F. Assmus, Jr and J. D. Key,
Designs and their codes,
Cambridge University Press, Cambridge, 1992.
MathSciNet
CrossRef
-
A. Borovik and S. Yal\cc\i nkaya,
Construction of some subgroups in black box groups PGL2(q) and PSL2(q),
arXiv:1403.2224v1, (2014).
https://arxiv.org/abs/1403.2224.
-
P. J. Cameron, G. R. Omidi and B. Tayfeh-Rezaie,
3-Designs from PGL2(q),
The Electron. J. Combin. 13 (2006), #R50, 11 pp.
-
D. Crnković and V. Mikulić,
Unitals, projective planes and other combinatorial structures constructed from the unitary groups U3(q),
q=3,4,5,7,
Ars Combin. 110 (2013), 3-13.
MathSciNet
-
D. Crnković, V. Mikulić and B. G. Rodrigues,
Designs, strongly regular graphs and codes constructed from some primitive groups,
in: Information security, coding theory and related combinatorics, IOS Press, Amsterdam,
2011, pages 231-252.
MathSciNet
-
M. R. Darafsheh,
Designs from the group PSL2(q), q even,
Des. Codes Cryptogr. 39 (2006), 311-316.
MathSciNet
CrossRef
-
L. E. Dickson,
Linear groups with an exposition of the Galois field theory,
Dover Publications, Inc., New York, 1958.
MathSciNet
-
J. D. Dixon and B. Mortimer,
Permutation groups,
Springer-Verlag New York Inc., 1996.
MathSciNet
CrossRef
-
T. Fritzsche,
The depth of subgroups of PSL2(q) II,
J. Algebra 381 (2013), 37-53.
MathSciNet
CrossRef
-
M. Giudici,
Maximal subgroups of almost simple groups with socle PSL2(q).
https://arxiv.org/abs/math/0703685.
-
J. D. Key and J. Moori,
Codes, designs and graphs from the Janko groups J1 and
J2,
J. Combin. Math. Combin. Comput. 40 (2002), 143-159.
MathSciNet
-
J. D. Key and J. Moori,
Correction to ``Codes, designs and graphs from the Janko groups
J1 and J2", J. Combin. Math. Combin. Comput. 40
(2002), 143-159,
J. Combin. Math. Combin. Comput. 64 (2008), 153.
MathSciNet
-
J. D. Key, J. Moori and B. G. Rodrigues,
Permutation decoding for the binary codes from triangular graphs,
European J. Combin. 25 (2004), 113-123.
MathSciNet
CrossRef
-
O. H. King,
The subgroup structure of finite classical groups in terms of geometric configurations,
in: Surveys in combinatorics 2005, Cambridge Univ. Press, Cambridge, 2005, 29-56.
MathSciNet
CrossRef
-
X. Mbaale and B. G. Rodrigues,
Symmetric 1-designs from PSL2(q), for q a power of an odd prime,
submitted.
-
J. Moori,
Finite groups, designs and codes,
in: Information security, coding theory and related combinatorics, IOS Press, Amsterdam,
2011, 202-230.
MathSciNet
-
J. Moori and A. Saeidi,
Some designs invariant under the Suzuki groups,
Util. Math. 109 (2018), 105-114.
MathSciNet
-
J. Moori and A. Saeidi,
Constructing some designs invariant under PSL2(q), q even,
Commun. Algebra 46 (2018), 160-166.
MathSciNet
CrossRef
-
R. A. Wilson,
The finite simple groups,
Springer-Verlag London Ltd., London, 2009.
MathSciNet
CrossRef
Glasnik Matematicki Home Page