Glasnik Matematicki, Vol. 55, No. 2 (2020), 337-349.


Vladimir Volenec, Zdenka Kolar-Begović and Ružica Kolar-Šuper

Department of Mathematics, University of Zagreb, Bijenička cesta 30, HR-10 000 Zagreb, Croatia

Department of Mathematics, University of Osijek, Trg Ljudevita Gaja 6, HR-31 000 Osijek, Croatia

Faculty of Education, University of Osijek, Cara Hadrijana 10, HR-31 000 Osijek, Croatia

Abstract.   In this paper we study geometric concepts in a general cubic structure. The well-known relationships on the cubic curve motivate us to introduce new concepts into a general cubic structure. We will define the concept of the tangential of a point in a general cubic structure and we will study tangentials of higher-order. The characterization of this concept will be also given by means of the associated totally symmetric quasigroup. We will introduce the concept of associated and corresponding points in a cubic structure, and discuss the number of mutually different corresponding points. The properties of the introduced geometric concepts will be investigated in a general cubic structure.

2010 Mathematics Subject Classification.   20N05

Key words and phrases.   Cubic structure, TSM-quasigroup, corresponding points, associated points, tangential of a point

Full text (PDF) (access from subscribing institutions only)


  1. H. Durège, Die ebenen Curven dritter Ordnung, Teubner, Leipzig, 1871.

  2. I. M. H. Etherington, Quasigroups and cubic curves, Proc. Edinburgh Math. Soc. (2) 14 (1964), 273-291.
    MathSciNet     CrossRef

  3. O. Hesse, "Uber Curven dritter Ordnung und die Kegelschnitte, welche diese Curven in drei verschiedenen Puncten berühren, J. Reine Angew. Math. 36 (1848), 143-176.
    MathSciNet     CrossRef

  4. C. Maclaurin, De linearum geometricarum proprietatibus, London, 1720.

  5. V. Volenec, Z. Kolar-Begović and R. Kolar-Šuper, Cubic structure, Glas. Mat. Ser. III 52(72) (2017), 247-256.
    MathSciNet     CrossRef

Glasnik Matematicki Home Page