Glasnik Matematicki, Vol. 55, No. 2 (2020), 301-336.

THE MINIMALLY DISPLACED SET OF AN IRREDUCIBLE AUTOMORPHISM IS LOCALLY FINITE

Stefano Francaviglia, Armando Martino and Dionysios Syrigos

Dipartimento di Matematica, University of Bologna, Italy
e-mail: stefano.francaviglia@unibo.it

Mathematical Sciences, University of Southampton, United Kingdom
e-mail: A.Martino@soton.ac.uk

Mathematical Sciences, University of Southampton, United Kingdom
e-mail: D.Syrigos@soton.ac.uk


Abstract.   We prove that the minimally displaced set of a relatively irreducible automorphism of a free splitting, situated in a deformation space, is uniformly locally finite. The minimally displaced set coincides with the train track points for an irreducible automorphism. We develop the theory in a general setting of deformation spaces of free products, having in mind the study of the action of reducible automorphisms of a free group on the simplicial bordification of Outer Space. For instance, a reducible automorphism will have invariant free factors, act on the corresponding stratum of the bordification, and in that deformation space it may be irreducible (sometimes this is referred as relative irreducibility).

2010 Mathematics Subject Classification.   20E06, 20E36, 20E08

Key words and phrases.   Relative outer space, min set, automorphims of free products of groups, irreducible automorphisms


Full text (PDF) (access from subscribing institutions only)

https://doi.org/10.3336/gm.55.2.09


References:

  1. H. Bass, Covering theory for graphs of groups, J. Pure Appl. Algebra 89 (1993), 3-47.
    MathSciNet     CrossRef

  2. M. Bestvina, A Bers-like proof of the existence of train tracks for free group automorphisms, Fund. Math. 214 (2011), 1-12.
    MathSciNet     CrossRef

  3. M. Bestvina and M. Feighn, Hyperbolicity of the complex of free factors, Adv. Math. 256 (2014), 104-155.
    MathSciNet     CrossRef

  4. M. Bestvina and M. Handel, Train tracks and automorphisms of free groups, Ann. of Math. (2) 135 (1992), 1-51.
    MathSciNet     CrossRef

  5. M. Bestvina and P. Reynolds The boundary of the complex of free factors, Duke Math. J. 164 (2015), 2213-2251.
    MathSciNet     CrossRef

  6. B. Brück and R. Gupta Homotopy type of the complex of free factors of a free group, Proc. Lond. Math. Soc. (3) 121 (2020), 17371765.
    MathSciNet     CrossRef

  7. J. Conant, M. Kassabov and K. Vogtmann, Hairy graphs and the unstable homology of Mod(g,s), Out(Fn) and Aut(Fn), J. Top. 6 (2013), 119-153.
    MathSciNet     CrossRef

  8. M. Culler and K. Vogtmann, Moduli of graphs and automorphisms of free groups, Invent. Math. 84 (1986), 91-119.
    MathSciNet     CrossRef

  9. S. Francaviglia and A. Martino, Metric properties of outer space, Publ. Mat. 55 (2011), 433-473.
    MathSciNet     CrossRef

  10. S. Francaviglia and A. Martino, The isometry group of outer space, Adv. Math. 231 (2012), 1940-1973.
    MathSciNet     CrossRef

  11. S. Francaviglia and A. Martino, Stretching factors, metrics and train tracks for free products, Illinois J. Math. 59 (2015), 859-899.
    MathSciNet     CrossRef

  12. S. Francaviglia and A. Martino, Displacements of automorphisms of free groups I: Displacement functions, minpoints and train tracks, preprint, arXiv:1807.02781.

  13. S. Francaviglia and A. Martino, Displacements of automorphisms of free groups II: Connectedness of level sets, preprint, arXiv:1807.02782.

  14. S. M. Gersten, Addendum: ``On fixed points of certain automorphisms of free groups", Proc. London Math. Soc. (3) 49 (1984), 340-342.
    MathSciNet     CrossRef

  15. S. M. Gersten, On fixed points of certain automorphisms of free groups, Proc. London Math. Soc. (3) 48 (1984), 72-90.
    MathSciNet     CrossRef

  16. S. M. Gersten, Fixed points of automorphisms of free groups, Adv. in Math. 64 (1987), 51-85.
    MathSciNet     CrossRef

  17. V. Guirardel and G. Levitt, The outer space of a free product, Proc. Lond. Math. Soc. (3) 94 (2007), 695-714.
    MathSciNet     CrossRef

  18. M. Handel and L. Mosher, The free splitting complex of a free group, I: hyperbolicity, Geom. Topol. 17 (2013), 1581-1672.
    MathSciNet     CrossRef

  19. M. Handel and L. Mosher, The free splitting complex of a free group, II: Loxodromic outer automorphisms, Trans. Amer. Math. Soc. 372 (2019), 4053-4105.
    MathSciNet     CrossRef

  20. A. Hatcher, Homological stability for automorphism groups of free groups, Comment. Math. Helv. 70 (1995), 39-62.
    MathSciNet     CrossRef

  21. A. Hilion and C. Horbez, The hyperbolicity of the sphere complex via surgery paths, J. Reine Angew. Math. 730 (2017), 135-161.
    MathSciNet     CrossRef

  22. C. Horbez, Hyperbolic graphs for free products, and the Gromov boundary of the graph of cyclic splittings, J. Topol. 9 (2016), 401-450.
    MathSciNet     CrossRef

  23. I. Kapovich, Detecting fully irreducible automorphisms: a polynomial time algorithm, Exp. Math. 28 (2019), 24-38.
    MathSciNet     CrossRef

  24. I. Kapovich, Algorithmic detectability of iwip automorphisms, Bull. Lond. Math. Soc. 46 (2014), 279-290.
    MathSciNet     CrossRef

  25. I. Kapovich and K. Rafi, On hyperbolicity of free splitting and free factor complexes, Groups Geom. Dyn. 8 (2014), 391-414.
    MathSciNet     CrossRef

  26. J. E. Los, On the conjugacy problem for automorphisms of free groups, Topology 35 (1996), 779-808, With an addendum by the author.
    MathSciNet     CrossRef

  27. M. Lustig, Conjugacy and centralizers for iwip automorphisms of free groups, Geometric group theory, Trends Math., Birkhäuser, Basel, 2007, pp. 197-224.
    MathSciNet     CrossRef

  28. S. Meinert, The Lipschitz metric on deformation spaces of G-trees, Algebr. Geom. Topol. 15 (2015), 987-1029.
    MathSciNet     CrossRef

  29. J.-P. Serre, Trees, Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2003. Translated from the French original by John Stillwell, Corrected 2nd printing of the 1980 English translation.
    MathSciNet    

  30. J. R. Stallings, Topology of finite graphs, Invent. Math. 71 (1983), 551-565.
    MathSciNet     CrossRef

Glasnik Matematicki Home Page