Glasnik Matematicki, Vol. 55, No. 2 (2020), 237-252.

HIGH RANK ELLIPTIC CURVES INDUCED BY RATIONAL DIOPHANTINE TRIPLES

Andrej Dujella and Juan Carlos Peral

Department of Mathematics, Faculty of Science, University of Zagreb, Bijenička cesta 30, 10000 Zagreb, Croatia
e-mail: duje@math.hr

Departamento de Matemáticas, Universidad del País Vasco, Aptdo. 644, 48080 Bilbao, Spain
e-mail: juancarlos.peral@ehu.es


Dedicated to the memory of our friend and coauthor Julián Aguirre

Abstract.   A rational Diophantine triple is a set of three nonzero rational a,b,c with the property that ab+1, ac+1, bc+1 are perfect squares. We say that the elliptic curve y2 = (ax+1)(bx+1)(cx+1) is induced by the triple {a,b,c}. In this paper, we describe a new method for construction of elliptic curves over with reasonably high rank based on a parametrization of rational Diophantine triples. In particular, we construct an elliptic curve induced by a rational Diophantine triple with rank equal to 12, and an infinite family of such curves with rank ≥ 7, which are both the current records for that kind of curves.

2010 Mathematics Subject Classification.   11G05, 11D09

Key words and phrases.   Elliptic curves, Diophantine triples, rank


Full text (PDF) (access from subscribing institutions only)

https://doi.org/10.3336/gm.55.2.05


References:

  1. J. Aguirre, A. Dujella and J. C. Peral, On the rank of elliptic curves coming from rational Diophantine triples, Rocky Mountain J. Math. 42 (2012), 1759-1776.
    MathSciNet     CrossRef

  2. A. Baker and H. Davenport, The equations 3x2 - 2 = y2 and 8x2 - 7 = z2, Quart. J. Math. Oxford Ser. (2) 20 (1969), 129-137.
    MathSciNet     CrossRef

  3. G. Campbell and E. H. Goins, Heron triangles, Diophantine problems and elliptic curves, preprint.

  4. J. Cremona, Algorithms for modular elliptic curves, Cambridge University Press, Cambridge, 1997.
    MathSciNet    

  5. A. Dujella, Diophantine triples and construction of high-rank elliptic curves over with three non-trivial 2-torsion points, Rocky Mountain J. Math. 30 (2000), 157-164.
    MathSciNet     CrossRef

  6. A. Dujella, There are only finitely many Diophantine quintuples, J. Reine Angew. Math. 566 (2004), 183-214.
    MathSciNet     CrossRef

  7. A. Dujella, On Mordell-Weil groups of elliptic curves induced by Diophantine triples, Glas. Mat. Ser. III 42(62) (2007), 3-18.
    MathSciNet     CrossRef

  8. A. Dujella, What is ... a Diophantine m-tuple?, Notices Amer. Math. Soc. 63 (2016), 772-774.
    MathSciNet     CrossRef

  9. A. Dujella, High rank elliptic curves with prescribed torsion, https://web.math.pmf.unizg.hr/ duje/tors/tors.html.

  10. A. Dujella and M. Kazalicki, More on Diophantine sextuples, in: Number Theory - Diophantine problems, uniform distribution and applications, Festschrift in honour of Robert F. Tichy's 60th birthday (C. Elsholtz, P. Grabner, Eds.), Springer-Verlag, Berlin, 2017, 227-235.
    MathSciNet    

  11. A. Dujella, M. Kazalicki, M. Mikić and M. Szikszai, There are infinitely many rational Diophantine sextuples, Int. Math. Res. Not. IMRN 2017 (2) (2017), 490-508.
    MathSciNet     CrossRef

  12. A. Dujella, M. Kazalicki and V. Petričević, There are infinitely many rational Diophantine sextuples with square denominators, J. Number Theory 205 (2019), 340-346.
    MathSciNet     CrossRef

  13. A. Dujella, M. Kazalicki and V. Petričević, Rational Diophantine sextuples containing two regular quadruples and one regular quintuple, Acta Mathematica Spalatensia 1 (2020), 19-27.

  14. A. Dujella and M. Mikić, Rank zero elliptic curves induced by rational Diophantine triples, Rad Hrvat. Akad. Znan. Umjet. Mat. Znan. 24 (2020), 29-37.
    MathSciNet     CrossRef

  15. A. Dujella and J. C. Peral, High rank elliptic curves with torsion /2ℤ × ℤ/4ℤ induced by Diophantine triples, LMS J. Comput. Math. 17 (2014), 282-288.
    MathSciNet     CrossRef

  16. A. Dujella and J. C. Peral, Elliptic curves induced by Diophantine triples, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Math. RACSAM 113 (2019), 791-806.
    MathSciNet     CrossRef

  17. A. Dujella and J. C. Peral, Construction of high rank elliptic curves, J. Geom. Anal., published online: 04 March 2020.
    CrossRef

  18. N. D. Elkies, Three lectures on elliptic surfaces and curves of high rank, Lecture notes, Oberwolfach, 2007, arXiv:0709.2908.

  19. N. D. Elkies, Personal communication, 2009.

  20. P. Gibbs, Some rational Diophantine sextuples, Glas. Mat. Ser. III 41(61) (2006), 195-203.
    MathSciNet     CrossRef

  21. B. He, A. Togbé and V. Ziegler, There is no Diophantine quintuple, Trans. Amer. Math. Soc. 371 (2019), 6665-6709.
    MathSciNet     CrossRef

  22. E. Herrmann, A. Pethö and H. G. Zimmer, On Fermat's quadruple equations, Abh. Math. Sem. Univ. Hamburg 69 (1999), 283-291.
    MathSciNet     CrossRef

  23. L. Lasić, Personal communication, 2017.

  24. J.-F. Mestre, Construction de courbes elliptiques sur de rank ≥ 12, C. R. Acad. Sci. Paris Ser. I 295 (1982), 643-644.
    MathSciNet    

  25. K. Nagao, An example of elliptic curve over with rank ≥ 20, Proc. Japan Acad. Ser. A Math. Sci. 69 (1993), 291-293.
    MathSciNet     CrossRef

  26. PARI/GP, version 2.11.1, Bordeaux, 2019, http://pari.math.u-bordeaux.fr.

  27. J. H. Silverman, Advanced Topics in the Arithmetic of Elliptic Curves, Springer-Verlag, New York, 1994.
    MathSciNet     CrossRef

  28. M. Stoll, Diagonal genus 5 curves, elliptic curves over (t), and rational diophantine quintuples, Acta Arith. 190 (2019), 239-261.
    MathSciNet     CrossRef

  29. R. van Luijk, On Perfect Cuboids, Thesis, Universiteit Utrecht, 2000.

Glasnik Matematicki Home Page