Glasnik Matematicki, Vol. 55, No. 1 (2020), 129-142.

APPROXIMATE INVERSE LIMITS AND (M,N)-DIMENSIONS

Matthew Lynam and Leonard R. Rubin

Department of Mathematics, East Central University, Ada, Oklahoma 74820, USA
e-mail: mlynam@ecok.edu

Department of Mathematics, University of Oklahoma, Norman, Oklahoma 73019, USA
e-mail: lrubin@ou.edu


Abstract.   In 2012, V. Fedorchuk, using m-pairs and n-partitions, introduced the notion of the (m,n)-dimension of a space. It generalizes covering dimension. Here we are going to look at this concept in the setting of approximate inverse systems of compact metric spaces. We give a characterization of (m,n)-dim X, where X is the limit of an approximate inverse system, strictly in terms of the given system.

2010 Mathematics Subject Classification.   54F45

Key words and phrases.   Dimension, (m,n)-dim , approximate inverse system


Full text (PDF) (free access)

https://doi.org/10.3336/gm.55.1.11


References:

  1. R. Engelking, Theory of dimensions finite and infinite, Heldermann Verlag, Lemgo, 1995.
    MathSciNet    

  2. V. V. Fedorchuk, Finite dimensions defined by means of m-coverings, Mat. Vesnik 64 (2012), 347-360.
    MathSciNet    

  3. V. V. Fedorchuk, Estimates of the dimension (m,n)-dim, Mosc. Univ. Math. Bull. 68 (2013), 177-181.
    MathSciNet     CrossRef

  4. V. V. Fedorchuk, Inductive (m,n)-dimensions, Topology Appl. 169 (2014), 120-135.
    MathSciNet     CrossRef

  5. V. Fedorchuk, Valuations for dimension (m,n)-dim, Matem. Vestnik, MUS (2013) (in Russian), in press.

  6. M. Lynam and L. R. Rubin, Extensional maps and approximate inverse limits, Topology Appl. 239 (2018), 324-336.
    MathSciNet     CrossRef

  7. S. Mardešić and L. R. Rubin, Approximate inverse systems of compacta and covering dimension, Pacific J. Math. 138 (1989), no. 1, 129-144.
    MathSciNet     CrossRef

  8. S. Mardešić and J. Segal, 𝒫-like continua and approximate inverse limits, Math. Japon. 33 (1988), no. 6, 895-908.
    MathSciNet    

  9. N. Martynchuk, Factorization theorem for the dimension (m,n)-dim, Mosc. Univ. Math. Bull. 68 (2013), 188-191.
    MathSciNet     CrossRef

  10. N. Martynchuk, Transfinite extension of dimension function (m,n)-dim, Topology Appl. 160 (2013), 2514-2522.
    MathSciNet     CrossRef

  11. N. Martynchuk, Several remarks concerning (m,n)-dimensions, Topology Appl. 178 (2014), 219-229.
    MathSciNet     CrossRef

  12. N. Martynchuk, Theorem on universal spaces for dimension function (m,n)-dim, Mat. Zametki (2013), in press.

Glasnik Matematicki Home Page

closeAccessibilityrefresh

If you want to save the settings pemanently click the Save button, otherwise the setting will be reset to default when you close the browser.