Glasnik Matematicki, Vol. 55, No. 1 (2020), 113-128.
THE HYPERSPACE OF TOTALLY DISCONNECTED SETS
Raúl Escobedo, Patricia Pellicer-Covarrubias and Vicente Sánchez-Gutiérrez
Facultad de Ciencias Físico-Matemáticas, Benemérita Universidad Autónoma de Puebla,
Av. San Claudio y 18 sur, Col. San Manuel, Edificio FM3-210,
Ciudad Universitaria C.P. 72570, Puebla, México
e-mail: escobedo@fcfm.buap.mx
Departmento de Matemáticas, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México, C.P. 04510, México
e-mail: paty@ciencias.unam.mx
Facultad de Ciencias Físico-Matemáticas, Benemérita Universidad Autónoma de Puebla,
Av. San Claudio y 18 sur, Col. San Manuel, Edificio FM3-210,
Ciudad Universitaria C.P. 72570, Puebla, México
e-mail: rompc190787@gmail.com
Abstract.
In this paper we study the hyperspace of all nonempty closed totally disconnected subsets of a space, equipped with the Vietoris topology. We show results of compactness, connectedness and local connectedness for this hyperspace. We also include a study of path connectedness, particularly we prove that for a smooth dendroid this hyperspace is pathwise connected, and we present a general result which implies that for an Euclidean space this hyperspace has uncountably many arc components.
2010 Mathematics Subject Classification. 54B20, 54F15, 54G05
Key words and phrases. Continuum, hyperspace, locally connected, pathwise connected, totally disconnected set
Full text (PDF) (free access)
https://doi.org/10.3336/gm.55.1.10
References:
- J. J. Charatonik,
Two invariants under continuity and the incomparability of fans,
Fund. Math. 53 (1963/64), 187-204.
MathSciNet
CrossRef
- J. J. Charatonik and C. Eberhart,
On smooth dendroids,
Fund. Math. 67 (1970), 297-322.
MathSciNet
CrossRef
- S. García-Ferreira and Y. F. Otriz-Castillo,
The hyperspace of convergent sequences,
Topol. Appl. 196 (2015), 795-804.
MathSciNet
CrossRef
- S. García-Ferreira and R. Rojas Hernández,
Connectedness like properties on the hyperspace of convergent sequences,
Topol. Appl. 230 (2017), 639-647.
MathSciNet
CrossRef
- A. Illanes and S. B. Nadler, Jr.,
Hyperspaces. Fundamental and recent advences,
Marcel Dekker, Inc., New York, 1999.
MathSciNet
- J. M. Martinez-Montejano,
Mutual aposyndesis of symmetric products,
Topology Proc. 24 (1999), 203-213.
MathSciNet
- D. Maya, P. Pellicer-Covarrubias and R. Pichardo-Mendoza,
General properties of the hyperspace of convergent sequences,
Topology Proc. 51 (2018), 143-168.
MathSciNet
- E. Michael,
Topologies on spaces of subsets,
Trans. Amer. Math. Soc. 71 (1951), 152-182.
MathSciNet
CrossRef
- L. Mohler,
A characterization of smoothness in dendroids,
Fund. Math. 67 (1970), 369-376.
MathSciNet
CrossRef
- S. B. Nadler, Jr.,
Hyperspaces of sets, Marcel Dekker, Inc., New York, 1978.
MathSciNet
- S. B. Nadler, Jr.,
Continuum theory. An introduction,
Marcel Dekker, Inc., New York, 1992.
MathSciNet
- G. T. Whyburn,
Analytic topology, Amer. Math. Soc. New York, 1942.
MathSciNet
Glasnik Matematicki Home Page