Glasnik Matematicki, Vol. 55, No. 1 (2020), 85-91.

CENTERS OF SUBGROUPS OF BIG MAPPING CLASS GROUPS AND THE TITS ALTERNATIVE

Justin Lanier and Marissa Loving

School of Mathematics, Georgia Institute of Technology, 686 Cherry St., Atlanta, GA 30332, USA
e-mail: jlanier8@gatech.edu

Department of Mathematics, University of Illinois, 1409 W. Green Street, Urbana, IL 61801, USA
e-mail: mloving2@illinois.edu


Abstract.   In this note we show that many subgroups of mapping class groups of infinite-type surfaces without boundary have trivial centers, including all normal subgroups. Using similar techniques, we show that every nontrivial normal subgroup of a big mapping class group contains a nonabelian free group. In contrast, we show that no big mapping class group satisfies the strong Tits alternative enjoyed by finite-type mapping class groups. We also give examples of big mapping class groups that fail to satisfy even the classical Tits alternative; consequently, these examples are not linear.

2010 Mathematics Subject Classification.   20F34, 57M60, 37E30

Key words and phrases.   Mapping class groups, normal subgroups, free subgroups, Tits alternative, centers


Full text (PDF) (access from subscribing institutions only)

https://doi.org/10.3336/gm.55.1.07


References:

  1. D. Allcock, Hyperbolic surfaces with prescribed infinite symmetry groups, Proc. Amer. Math. Soc. 134 (2006), 3057-3059.
    MathSciNet     CrossRef

  2. T. Brendle and D. Margalit, Normal subgroups of mapping class groups and the metaconjecture of Ivanov, J. Amer. Math. Soc. 32 (2019), 1009-1070.
    MathSciNet     CrossRef

  3. M. G. Brin and C. C. Squier, Groups of piecewise linear homeomorphisms of the real line, Invent. Math. 79 (1985), 485-498.
    MathSciNet     CrossRef

  4. B. Farb and D. Margalit, A primer on mapping class groups, Princeton University Press, Princeton, 2012.
    MathSciNet    

  5. L. Greenberg, Maximal groups and signatures, Ann. of Math. Studies, No. 79, 1974, 207-226.
    MathSciNet    

  6. S. Hurtado and E. Militon, Distortion and Tits alternative in smooth mapping class groups, Trans. Amer. Math. Soc. 371 (2019), 8587-8623.
    MathSciNet     CrossRef

  7. N. V. Ivanov, Algebraic properties of the Teichmüller modular group, Dokl. Akad. Nauk SSSR 275 (1984), 786-789.
    MathSciNet    

  8. B. Kerékjártó, Vorlesungen über Topologie. I. Springer, Berlin, 1923.

  9. S. Afton, S. Freedman, J. Lanier and L. Yin, Generators, relations, and homomorphisms of big mapping class groups, in preparation.

  10. J. McCarthy, A ``Tits-alternative'' for subgroups of surface mapping class groups, Trans. Amer. Math. Soc. 291 (1985), 583-612.
    MathSciNet     CrossRef

  11. J. Hernández Hernández, I. Morales and F. Valdez, The Alexander method for infinite-type surfaces, Michigan Math. J. 68 (2019), 743-753.
    MathSciNet     CrossRef

  12. L. Paris and D. Rolfsen, Geometric subgroups of mapping class groups, J. Reine Angew. Math. 521 (2000), 47-83.
    MathSciNet     CrossRef

  13. P. Patel and N. G. Vlamis, Algebraic and topological properties of big mapping class groups, Algebr. Geom. Topol. 18 (2018), 4109-4142.
    MathSciNet     CrossRef

  14. R. C. Penner, A construction of pseudo-Anosov homeomorphisms, Trans. Amer. Math. Soc. 310 (1988), 179-197.
    MathSciNet     CrossRef

  15. I. Richards, On the classification of noncompact surfaces, Trans. Amer. Math. Soc. 106 (1963), 259-269.
    MathSciNet     CrossRef

  16. J. Tits, Free subgroups in linear groups, J. Algebra 20 (1972), 250-270.
    MathSciNet     CrossRef

  17. J. Winkelmann, Realizing countable groups as automorphism groups of Riemann surfaces, Doc. Math. 6 (2001), 413-417.
    MathSciNet    

Glasnik Matematicki Home Page