Glasnik Matematicki, Vol. 55, No. 1 (2020), 67-83.

ON THE FAITHFULNESS OF 1-DIMENSIONAL TOPOLOGICAL QUANTUM FIELD THEORIES

Sonja Telebaković Onić

Faculty of Mathematics, Studentski trg 16, 11 000 Belgrade, Serbia
e-mail: sonjat@matf.bg.ac.rs


Abstract.   This paper explores 1-dimensional topological quantum field theories. We separately deal with strict and strong 1-dimensional topological quantum field theories. The strict one is regarded as a symmetric monoidal functor between the category of 1-cobordisms and the category of matrices, and the strong one is a symmetric monoidal functor between the category of 1-cobordisms and the category of finite dimensional vector spaces. It has been proved that both strict and strong 1-dimensional topological quantum field theories are faithful.

2010 Mathematics Subject Classification.   15A69, 15B34, 18M05, 57R56

Key words and phrases.   Symmetric monoidal category, oriented manifold, cobordism, topological quantum field theory, Brauerian representation, Kronecker product, commutation matrix


Full text (PDF) (free access)

https://doi.org/10.3336/gm.55.1.06


References:

  1. M. Atiyah, Topological quantum field theories, Inst. Hautes Études Sci. Publ. Math. 68 (1988), 175-186.
    MathSciNet     CrossRef

  2. Dj. Baralić, Z. Petrić and S. Telebaković, Spheres as Frobenius objects, Theory Appl. Categ. 33 (2018), 691-726.
    MathSciNet    

  3. R. Brauer, On algebras which are connected with semisimple continuous groups, Ann. of Math. 38 (1937), 857-872.
    MathSciNet     CrossRef

  4. K. Došen and Z. Petrić, A Brauerian representation of split preorders, MLQ Math. Log. Q. 49 (2003), 579-586.
    MathSciNet     CrossRef

  5. K. Došen and Z. Petrić, Generality of proofs and its Brauerian representation, J. Symbolic Logic 68 (2003), 740-750.
    MathSciNet     CrossRef

  6. K. Došen and Z. Petrić, Symmetric self-adjunctions: A justification of Brauer's representation of Brauer's algebras, Proceedings of the Conference ``Contemporary Geometry and Related Topics'' (eds. N. Bokan et al.), Belgrade 2006, 177-187.
    MathSciNet    

  7. K. Došen and Z. Petrić, Symmetric self-adjunctions and matrices, Algebra Colloq. 19 (2012), 1051-1082.
    MathSciNet     CrossRef

  8. D. Dummit and R. Foote, Abstract algebra, 3rd Edition, John Wiley & Sons, New York, 2004.
    MathSciNet    

  9. S. Gajović, Z. Petrić and S. Telebaković Onić, A faithful 2-dimensional TQFT, Homology Homotopy Appl. 22 (2020), 391-399.
    MathSciNet     CrossRef

  10. A. Jain, Fundamentals of digital image processing, Prentice-Hall, Inc., Engelwood Cliffs, New Jersey, 1989.

  11. A. Juhász, Defining and classifying TQFTs via surgery, Quantum Topol. 9 (2018), 229-321.
    MathSciNet     CrossRef

  12. J. Kock, Frobenius algebras and 2d topological quantum field theories, Cambridge University Press, Cambridge, 2004.
    MathSciNet    

  13. J. Lurie, On the classification of topological field theories, in: Current Developments in Mathematics (eds. D. Jerison et al.), International Press, Somerville 2009, 129-280.
    MathSciNet    

  14. S. Mac Lane, Categories for the working mathematician, second edition, Springer, Berlin, 1998.
    MathSciNet    

  15. J. R. Magnus and H. Neudecker, Matrix differential calculus with applications in statistics and econometrics, 2nd Edition, John Wiley & Sons, Chichester, 1999.
    MathSciNet    

  16. F. Quinn, Lectures on axiomatic topological quantum field theory, in: Geometry and Quantum Field Theory (eds. D. S. Freed and K. K. Uhlenbeck), Amer. Math. Soc., Providence, 1995, 323-453.
    MathSciNet    

  17. C. Rakotonirina, On the tensor permutation matrices, preprint (arXiv:1101.0910v3).

  18. W. J. Vetter, Vector structures and solutions of linear matrix equations, Linear Algebra Appl. 10 (1975), 181-188.
    MathSciNet     CrossRef

  19. E. Witten, Topological quantum field theory, Comm. Math. Phys. 117 (1988), 353-386.
    MathSciNet     CrossRef

Glasnik Matematicki Home Page