Glasnik Matematicki, Vol. 55, No. 1 (2020), 55-65.

EXTENSION OF THE FUNCTIONAL INDEPENDENCE OF THE RIEMANN ZETA-FUNCTION

Antanas Laurinčikas

Institute of Mathematics, Faculty of Mathematics and Informatics, Vilnius University, Naugarduko str. 24, LT-03225 Vilnius, Lithuania
e-mail: antanas.laurincikas@mif.vu.lt


Abstract.   In 1972, Voronin proved the functional independence of the Riemann zeta-function ζ(s), i. e., if the functions φj are continuous in N and φ0(ζ(s), …, ζ(N-1)(s))+ ∙∙∙ + sn φn(ζ(s), …, ζ(N-1)(s)) ≡ 0, then φj≡ 0 for j=0,…, n. The problem goes back to Hilbert who obtained the algebraic-differential independence of ζ(s). In the paper, the functional independence of compositions F(ζ(s)) for some classes of operators F in the space of analytic functions is proved. For example, as a particular case, the functional independence of the function cosζ(s) follows.

2010 Mathematics Subject Classification.   11M06

Key words and phrases.   Algebraic-differential independence, functional independence, Riemann zeta-function, space of analytic functions, universality


Full text (PDF) (free access)

https://doi.org/10.3336/gm.55.1.05


References:

  1. D. Hilbert, Mathematical problems, Bull. Amer. Math. Soc. 8 (1902), 437-479.
    MathSciNet     CrossRef

  2. O. Hölder, Über die Eigenschaft der Gammafunktion keiner algebraischen Differentialgleichung zu genügen, Math. Ann. 28 (1887), 1-13.

  3. A. A. Karatsuba and S. M. Voronin, Walter de Gruyter, Berlin, 1992.
    MathSciNet     CrossRef

  4. A. Laurinčikas, Limit theorems for the Riemann Zeta-function, Kluwer, Dordrecht, Boston, London, 1996.
    MathSciNet     CrossRef

  5. A. Laurinčikas, Universality of the Riemann zeta-function, J. Number Theory 130 (2010), 2323-2331.
    MathSciNet     CrossRef

  6. A. Laurinčikas, Universality of composite functions, in: Functions in number theory and their probabilistic aspects, RIMS Kôkyûroku Bessatsu B34 Res. Inst. Math. Sci. (RIMS), Kyoto, 2012. 191-204.
    MathSciNet    

  7. A. Laurinčikas, On zeros of some analytic functions related to the Riemann zeta-function, Glasn. Mat. Ser III. 48 (2013), 59-65.
    MathSciNet     CrossRef

  8. A. Ostrowski, Über Dirichletsche Reihen und algebraische Differentialgleichungen, Math. Z. 8 (1920), 241-298.
    MathSciNet     CrossRef

  9. A. G. Postnikov, On the differential independence of Dirichlet series, Doklady Akad. Nauk SSSR (N.S.) 66 (1949) 561-564 (Russian).
    MathSciNet    

  10. A. G. Postnikov, A generalization of one of the Hilbert problems, Doklady Akad. Nauk SSSR (N.S.) 107 (1956), 512-515 (Russian).
    MathSciNet    

  11. S. M. Voronin, The distribution of the nonzero values of the Riemann ζ-function, Trudy Math. Inst. Steklov 128 (1972), 131-150 (Russian).
    MathSciNet    

  12. S. M. Voronin, The differential independence of ζ-functions, Doklady Akad. Nauk SSSR (N.S.) 209 (1973), 1264-1266 (Russian).
    MathSciNet    

  13. S. M. Voronin, A theorem on the ``universality'' of the Riemann zeta-function, Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975), 475-486 (Russian).
    MathSciNet    

  14. S. M. Voronin, The functional independence of Dirichlet L-functions, Acta Arith. 27 (1975), 493-503 (Russian).
    MathSciNet    

  15. S. M. Voronin, Selected works: Mathematics, (ed. A. A. Karatsuba), Publishing House MGTU Im. N. E. Baumana, Moscow, 2006 (Russian).

Glasnik Matematicki Home Page

closeAccessibilityrefresh

If you want to save the settings pemanently click the Save button, otherwise the setting will be reset to default when you close the browser.