Glasnik Matematicki, Vol. 55, No. 1 (2020), 37-53.
PERFECT POWERS IN AN ALTERNATING SUM OF CONSECUTIVE CUBES
Pranabesh Das, Pallab Kanti Dey, Bibekananda Maji and Sudhansu Sekhar Rout
Pure Mathematics, University of Waterloo,
200 University Avenue West,
Waterloo, Ontario, Canada
e-mail: pranabesh.math@gmail.com
Stat-Math Unit, Indian Statistical Institute,
7, S. J. S. Sansanwal Marg, New Delhi, Delhi - 110016, India
e-mail: pallabkantidey@gmail.com
Department of Mathematics, Indian Institute of Technology Indore, Simrol, Indore, Madhya Pradesh - 453552, India
e-mail: bibekanandamaji@iiti.ac.in
Institute of Mathematics and Applications, Andharua, Bhubaneswar, Odisha - 751029, India
e-mail: lbs.sudhansu@gmail.com
Abstract.
In this paper, we consider the problem about finding out perfect powers in an alternating sum of consecutive cubes. More precisely, we completely solve the Diophantine equation (x+1)3 - (x+2)3 + ∙∙∙ - (x + 2d)3 + (x + 2d + 1)3 = zp, where p is prime and x,d,z are integers with 1 ≤ d ≤ 50.
2010 Mathematics Subject Classification. 11D61, 11D41, 11F11, 11F80
Key words and phrases. Diophantine equation, Galois representation, Frey curve, modularity, level lowering, linear forms in logarithms
Full text (PDF) (free access)
https://doi.org/10.3336/gm.55.1.04
References:
- M. Bennett, K. Györy and Á. Pintér, On the diophantine equation 1 k + 2 k + ∙∙∙ + x k = yn, Compos. Math. 140 (2004), 1417-1431.
MathSciNet
CrossRef
- M. Bennett, A superelliptic equation involving alternating sums of powers, Publ. Math. Debrecen 79 (2011), 317-324.
MathSciNet
CrossRef
- M. Bennett, V. Patel and S. Siksek, Perfect powers that are sums of consecutive cubes, Mathematika 63 (2017), 230-249.
MathSciNet
CrossRef
- W. Bosma, J. Cannon and C. Playoust, The Magma algebra system. I. The user language, J. Symboli Comput. 24 (1997), 235-265.
MathSciNet
CrossRef
- J. W. S. Cassels, A Diophantine equation, Glasgow Math. J. 27 (1985), 11-88.
MathSciNet
CrossRef
- H. Cohen, Number theory vol. II: analytic and modern tools, Springer, New York, 2007.
MathSciNet
- K. Dilcher, On a Diophantine equation involving quadratic characters, Compos. Math. 57 (1986), 383-403.
MathSciNet
CrossRef
- M. Jacobson, Á. Pintér, P. G. Walsh, A computational approach for solving y2= 1 k + 2 k + ∙∙∙ + x k, Math Comp. 72 (2003), 2099-2110.
MathSciNet
CrossRef
- A. Kraus, Majorations effectives pour l'équation de Fermat généralisée, Canad. J. Math. 49 (1997), 1139-1161.
MathSciNet
CrossRef
- M. Laurent, Linear forms in two logarithms and interpolation determinants II, Acta. Arith. 133 (2008), 325-348.
MathSciNet
CrossRef
-
W. J. Leveque, On the equation ym = f(x), Acta. Arith. 9 (1964), 209-219.
MathSciNet
CrossRef
- É. Lucas, Problem 1180, Nouvelle Ann. Math. 14 (1875), 336.
- B. Mazur, Rational isogenies of prime degree, Invent. Math. 44 (1978), 129-162.
MathSciNet
CrossRef
- Á. Pintér, On the power values of power sums, J. Number Theory 125 (2007), 412-423.
MathSciNet
CrossRef
- K. Ribet, On modular representations of Gal( ̅ℚ/ℚ) arising from modular forms, Invent. Math. 100 (1990), 431-476.
MathSciNet
CrossRef
- J. J. Schäffer, The equation 1 p + 2 p + ∙∙∙+ n p = m q, Acta Math. 95 (1956), 155-189.
MathSciNet
CrossRef
- A. Schinzel and R. Tijdeman, On the equation ym = f(x), Acta Arith. 31 (1976), 199-204.
MathSciNet
CrossRef
- S. Siksek, Modular approach to Diophantine equations, in: Explicit methods in number theory, Panor. Syntheses 36, Soc. Math. France, Paris, 2012, 151–-179.
MathSciNet
- N. P. Smart, The algorithmic resolution of Diophantine equations, Cambridge University Press, 1997.
MathSciNet
CrossRef
- G. Soydan, On the Diophantine equation (x+1)k + (x+2)k + ∙∙∙ + (lx)k = yn, Publ. Math. Debrecen 91 (2017), 369-382.
MathSciNet
CrossRef
- R. J. Stroeker, On the sum of consecutive cubes being a square, Compos. Math. 97 (1995), 295-307.
MathSciNet
CrossRef
- G. N. Watson, The problem of the square pyramid, Messenger of Math. 48 (1918), 1-22.
- A. Wiles, Modular elliptic curves and Fermat's Last Theorem, Ann. Math. (2) 141 (1995), 443-551.
MathSciNet
CrossRef
- Z. Zhang and M. Bai, On the diophantine equation (x+1) 2 + (x+2) 2 + ∙∙∙+ (x+d) 2 = yn, Funct. Approx. Comment. Math. 49 (2013), 73-77.
MathSciNet
CrossRef
- Z. Zhang, On the Diophantine equation (x-1)k + xk + (x+1)k = yn, Publ. Math. Debrecen 85 (2014), 93-100.
MathSciNet
CrossRef
Glasnik Matematicki Home Page