Glasnik Matematicki, Vol. 54, No. 2 (2019), 477-499.

BICOVARIANT DIFFERENTIAL CALCULI FOR FINITE GLOBAL QUOTIENTS

David N. Pham

Department of Mathematics & Computer Science, Queensborough C. College, City University of New York, Bayside, NY 11364, USA
e-mail: dpham90@gmail.com


Abstract.   Let (M,G) be a finite global quotient, that is, a finite set M with an action by a finite group G. In this note, we classify all bicovariant first order differential calculi (FODCs) over the weak Hopf algebra 𝕜 (G ⋉ M) ≃ 𝕜 [G ⋉ M]*, where G ⋉ M is the action groupoid associated to (M,G), and 𝕜[G ⋉ M] is the groupoid algebra of G ⋉ M. Specifically, we prove a necessary and sufficient condition for a FODC over 𝕜(G ⋉ M) to be bicovariant and then show that the isomorphism classes of bicovariant FODCs over 𝕜(G ⋉ M) are in one-to-one correspondence with subsets of a certain quotient space.

2010 Mathematics Subject Classification.   58B32, 16T05, 18B40

Key words and phrases.   Global quotients, noncommutative differential geometry, first order differential calculi, weak Hopf algebras


Full text (PDF) (free access)

https://doi.org/10.3336/gm.54.2.10


References:

  1. L. Abrams, Two dimensional topological quantum field theories and Frobenius algebras, J. Knot Theory Ramifications 5 (1996), 569-587.
    MathSciNet     CrossRef

  2. E. Batista, Noncommutative geometry: a quantum group approach, Mat. Contemp. 28 (2005), 63-90.
    MathSciNet    

  3. G. Böhm, F. Nill and K. Szlachányi, Weak Hopf algebras. I. Integral theory and C*-structure, J. Algebra 221 (1999), 385-438.
    MathSciNet     CrossRef

  4. T. Brzeziński and S. Majid Quantum group gauge theory on quantum spaces, Comm. Math. Phys. 157 (1993), 591-638.
    MathSciNet     CrossRef

  5. K. Bresser, F. Müller-Hoissen, A. Dimakis and A. Sitarz, Non-commutative geometry of finite groups, J. Physics A 29 (1996), 2705-2735.
    MathSciNet     CrossRef

  6. J. Chen and S. Wang, Differential calculi on quantum groupoids, Comm. Algebra 36 (2008), 3792-3819.
    MathSciNet     CrossRef

  7. A. Connes, Noncommutative differential geometry, Inst. Hautes Études Sci. Publ. Math. 62 (1985), 275-360.
    MathSciNet     CrossRef

  8. A. Connes, Noncommutative geometry, Academic Press, Inc., San Diego, 1994.
    MathSciNet    

  9. A. Dimakis and F. Müller-Hoissen, Discrete differential calculus, graphs, topologies and gauge theory, J. Math. Physics 35 (1994), 6703-6735.
    MathSciNet     CrossRef

  10. B. Fantechi and L. Goettsche, Orbifold cohomology for global quotients, Duke Math. J. 117 (2003), 197-227.
    MathSciNet     CrossRef

  11. X. Gomez and S. Majid, Noncommutative cohomology and electromagnetism on q[SL2] at roots of unity, Lett. Math. Phys. 60 (2002), 221-237.
    MathSciNet     CrossRef

  12. T. Jarvis, R. Kaufmann and T. Kimura, Stringy K-theory and the Chern character, Invent. Math. 168 (2007), 23-81.
    MathSciNet     CrossRef

  13. R. Kaufmann, Orbifolding Frobenius algebras, Internat. J. Math. 14 (2003), 573-619.
    MathSciNet     CrossRef

  14. R. Kaufmann, Global stringy orbifold cohomology, K-theory and de Rham theory, Lett. Math. Phys. 94 (2010), 165-195.
    MathSciNet     CrossRef

  15. G. Landi, An introduction to noncommutative spaces and their geometries, Springer, 1997.
    MathSciNet    

  16. J. Madore, An introduction to noncommutative differential geometry and its physical applications, 2nd. Ed. Cambridge University Press, Cambridge, 1999.
    MathSciNet     CrossRef

  17. S. Majid Non-commutative differential geometry, in: Analysis and mathematical physics, World Sci. Publ., Hackensack, 2017, 139-176.
    MathSciNet    

  18. S. Majid, Riemannian geometry of quantum groups and finite groups with nonuniversal differentials, Comm. Math. Phys. 225 (2002), 131-170.
    MathSciNet     CrossRef

  19. J. Nestruev, Smooth manifolds and observables, Springer-Verlag, New York, 2003.
    MathSciNet    

  20. S. B. Sontz, Principal bundles. The quantum case, Springer, 2015.
    MathSciNet     CrossRef

  21. M. Sweedler, Hopf algebras, W. A. Benjamin, Inc., New York, 1969.
    MathSciNet    

  22. V. Turaev, Homotopy field theory in dimension 2 and group-algebras, arXiv.org:math/9910010, (1999).

  23. S. L. Woronowicz, Differential calculus on compact matrix pseudogroups (quantum groups), Comm. Math. Phys. 122 (1989), 125-170.
    MathSciNet     CrossRef

  24. H. Zhu, S. Wang and J. Chen Bicovariant differential calculi on a weak Hopf algebra, Taiwanese J. Math. 18 (2014), 1679-1712.
    MathSciNet     CrossRef

Glasnik Matematicki Home Page