Glasnik Matematicki, Vol. 54, No. 1 (2019), 233-254.

A NOTE ON THE TRACE THEOREM FOR BESOV-TYPE SPACES OF GENERALIZED SMOOTHNESS ON D-SETS

Vanja Wagner

Department of Mathematics, Faculty of Science, University of Zagreb, 10 000 Zagreb, Croatia
e-mail: wagner@math.hr


Abstract.   The main goal of this paper is to give a complete proof of the trace theorem for Besov-type spaces of generalized smoothness associated with complete Bernstein functions satisfying certain scaling conditions on d-sets D ⊂ℝn, d≤ n. The proof closely follows the classical approach by Jonsson, Wallin in [18] and the trace theorem for classical Besov spaces. Here, the trace space is defined by means of differences. When d=n, as an application of the trace theorem, we give a condition under which the test functions Cc(D) are dense in the trace space on D.

2010 Mathematics Subject Classification.   46E35, 60J75, 60G51

Key words and phrases.   Function spaces of generalized smoothness, d-sets, trace space, Bernstein functions


Full text (PDF) (free access)

https://doi.org/10.3336/gm.54.1.10


References:

  1. D. R. Adams and L. I. Hedberg, Function spaces and potential theory, Springer-Verlag, Berlin, 1996.
    MathSciNet     CrossRef

  2. A. Almeida and A. Caetano, Real interpolation of generalized Besov-Hardy spaces and applications J. Fourier Anal. Appl. 17 (2010), 691-719.
    MathSciNet     CrossRef

  3. K. Bogdan, K. Burdzy and Z.-Q. Chen, Censored stable processes, Probab. Theory Related Fields 127 (2003), 89-152.
    MathSciNet     CrossRef

  4. F. Cobos and D.L. Fernandez, Hardy-Sobolev spaces and Besov spaces with a function parameter, in Function Spaces and Applications (Lund, 1986), Lecture Notes in Math. 1302, Springer, Berlin, 1988, 158-170.

  5. E.W. Farkas, Function spaces of generalized smoothness and pseudo-differential operators associated to a continuous negative definite function, Habilitationschrift, Ludwig-Maximilian Universität München, 2002.

  6. E.W. Farkas and H.-G. Leopold, Characterisations of function spaces of generalised smoothness, Ann. Mat. Pura Appl. (4) 185 (2006), 1-62.
    MathSciNet     CrossRef

  7. W. Farkas and N. Jacob, Sobolev spaces on non-smooth domains and Dirichlet forms related to subordinate reflecting diffusions, Math. Nachr. 224 (2001), 75-104.
    MathSciNet     CrossRef

  8. W. Farkas, N. Jacob and R. Schilling, Feller semigroups, Lp-sub-Markovian semigroups, and applications to pseudo-differential operators with negative definite symbols, Forum Math. 13 (2001), 51-90.
    MathSciNet     CrossRef

  9. W. Farkas, N. Jacob and R. Schilling, Function spaces related to continuous negative definite functions: ψ-Bessel potential spaces, Dissertationes Math. (Rozprawy Mat.) 393 (2001), 62 pp.
    MathSciNet     CrossRef

  10. M. Fukushima, Y. Oshima and M. Takeda, Dirichlet forms and symmetric Markov processes, Walter de Gruyter & Co., Berlin, 2011.
    MathSciNet    

  11. N. Jacob, Feller semigroups, Dirichlet forms, and pseudodifferential operators, Forum Math. 4 (1992), 433-446.
    MathSciNet     CrossRef

  12. N. Jacob, A class of Feller semigroups generated by pseudo differential operators, Math. Z. 215 (1994), 151-166.
    MathSciNet     CrossRef

  13. N. Jacob, Pseudo-differential operators and Markov processes, Akademie-Verlag, Berlin, 1996.
    MathSciNet    

  14. N. Jacob, Pseudo-differential operators and Markov processes. Vol. I. Fourier analysis and semigroups, Imperial College Press, London, 2001.
    MathSciNet     CrossRef

  15. N. Jacob, Pseudo-differential operators and Markov processes. Vol. II. Generators and their potential theory, Imperial College Press, London, 2002.
    MathSciNet     CrossRef

  16. N. Jacob, Pseudo-differential operators and Markov processes. Vol. III. Markov processes and applications, Imperial College Press, London, 2005.
    MathSciNet     CrossRef

  17. N. Jacob and R. Schilling, Extended Lp Dirichlet spaces, in: Around the research of Vladimir Maz'ya. I., Springer, New York, 2009, 221-238.
    MathSciNet     CrossRef

  18. A. Jonsson and H. Wallin, Function spaces on subsets of n, Harwood Acad. Publ., 1984.

  19. P. Kim, R. Song, and Z. Vondraček, Martin boundary for some symmetric Lévy processes, Festschrift Masatoshi Fukushima, World Sci. Publ., Hackensack, 2015, 307-342.
    MathSciNet     CrossRef

  20. V. Knopova and M. Zähle, Spaces of generalized smoothness on h-sets and related Dirichlet forms, Studia Math. 174 (2006), 277-308.
    MathSciNet     CrossRef

  21. S.D. Moura, On some characterizations of Besov spaces of generalized smoothness, Math. Nachr. 280 (2007), 1190-1199.
    MathSciNet     CrossRef

  22. R. Schilling, R. Song and Z. Vondraček, Bernstein functions. Theory and applications, Walter de Gruyter & Co., Berlin, 2009.
    MathSciNet    

  23. I. J. Schoenberg, Metric spaces and completely monotone functions, Ann. of Math. (2) 39 (1938), 811-841.
    MathSciNet     CrossRef

  24. H. Triebel, Theory of function spaces. II, Birkhäuser, Basel, 1992.
    MathSciNet    

  25. H. Triebel, Interpolation theory, function spaces, differential operators, North-Holland, Amsterdam-New York, 1978.
    MathSciNet    

  26. V. Wagner, Censored symmetric Lévy-type processes, preprint, 2018, 20pp.

  27. H. Wallin, The trace to the boundary of Sobolev spaces on a snowflake, Manuscripta Math. 73 (1991), 117-125.
    MathSciNet     CrossRef

  28. M. Zähle, Potential spaces and traces of Lévy processes on h-sets, J. Contemp. Math. Anal. 44 (2009), 117-145.
    MathSciNet     CrossRef

Glasnik Matematicki Home Page