Glasnik Matematicki, Vol. 54, No. 1 (2019), 65-75.

DIOPHANTINE M-TUPLES WITH THE PROPERTY D(N)

Riley Becker and M. Ram Murty

Department of Mathematics, Queen's University, Kingston, Ontario, K7L 3N6, Canada
e-mail: rileydbecker@gmail.com
e-mail: murty@queensu.ca


Abstract.   Let n be a non-zero integer. A set of m positive integers { a1,a2,⋯ ,am} such that aiaj+n is a perfect square for all 1≤ i < j≤ m is called a Diophantine m-tuple with the property D(n). In a series of papers, Dujella studied the quantity Mn= sup {|𝒮|: 𝒮 has the property D(n)} and showed for |n|≥ 400 that Mn ≤ 15.476 log |n| and if |n| >10100, then Mn < 9.078 log |n|. We refine his argument to show that Cn≤ 2log |n|+ O(log |n|/(log log |n|)2), where the implied constant is effectively computable and Cn = sup {|𝒮 ∩ [1,n2]|:𝒮 has the property D(n)}. Together with earlier work of Dujella, this implies Mn≤ 2.6071 log |n|+ O(log |n|/ (log log |n|)2), where the implied constant is effectively computable.

2010 Mathematics Subject Classification.   11D25, 11N36

Key words and phrases.   Diophantine m-tuples, Gallagher's sieve, Vinogradov's inequality


Full text (PDF) (access from subscribing institutions only)

DOI: 10.3336/gm.54.1.05


References:

  1. A. Baker and H. Davenport, The equations 3x2-2=y2 and 8x2-7=z2, Quart. J. Math. Oxford Ser. (2) 20 (1969), 129-137.
    MathSciNet     CrossRef

  2. E. Brown, Sets in which xy+k is always a square, Math. Comp. 45 (1985), 613-620.
    MathSciNet     CrossRef

  3. L. Caporaso, J. Harris and B. Mazur, Uniformity of Rational Points, J. Amer. Math. Soc. 10 (1997), 1-35.
    MathSciNet     CrossRef

  4. A. C. Cojocaru and M. R. Murty, An introduction to sieve methods and their applications, Cambridge University Press, 2006.
    MathSciNet    

  5. H. Davenport, Multiplicative number theory, Springer-Verlag, New York, 1980.
    MathSciNet    

  6. L. E. Dickson, History of the theory of numbers, Washington Carnegie Institution of Washington, 1923, 513-520.
    MathSciNet    

  7. A. Dujella, An absolute bound for the size of Diophantine m-tuples, J. Number Theory 89 (2001), 126-150.
    MathSciNet     CrossRef

  8. Andrej Dujella, There are only finitely many Diophantine quintuples, J. Reine Angew. Math. 566 (2004), 183-214.
    MathSciNet     CrossRef

  9. A. Dujella, On the size of Diophantine m-tuples, Math. Proc. Cambridge Philos. Soc. 132 (2002), 23-33.
    MathSciNet     CrossRef

  10. A. Dujella, Bounds for the size of sets with the property D(n), Glas. Mat. Ser. III 39(59) (2004), 199-205.
    MathSciNet     CrossRef

  11. A. Dujella and F. Luca, Diophantine m-tuples for primes, Int. Math. Res. Not. 47 (2005), 2913-2940.
    MathSciNet     CrossRef

  12. P. Dusart, Explicit estimates of some functions over primes, Ramanujan J. 45 (2018), 227-251.
    MathSciNet     CrossRef

  13. J.-H. Evertse and J. H. Silverman, Uniform bounds for the number of solutions to Yn=f(X), Math. Proc. Cambridge Philos. Soc. 100 (1986), 237-248.
    MathSciNet     CrossRef

  14. P. X. Gallagher, A larger sieve, Acta Arith. 18 (1971), 77-81.
    MathSciNet     CrossRef

  15. H. Gupta and K. Singh, On k-triad sequences, Internat. J. Math. Math. Sci. 8 (1985), 799-804.
    MathSciNet     CrossRef

  16. B. He, A. Togbé and V. Ziegler, There is no Diophantine quintuple, Trans. Amer. Math. Soc. 371 (2019), 6665-6709.
    MathSciNet     CrossRef

  17. S. P. Mohanty and A. M. S. Ramasamy, On Pr,k sequences, Fibonacci Quart. 23 (1985), 36-44.
    MathSciNet    

  18. M. R. Murty, Problems in analytic number theory, Springer, New York, 2008.
    MathSciNet    

  19. G. Robin, Estimation de la fonction de Tchebychef θ sur le k-ième nombre premier et grandes valeurs de la fonction ω(n) nombre de diviseurs premiers de n, Acta Arit. 42 (1983), 367-389.
    MathSciNet     CrossRef

  20. J. H. Silverman, A quantitative version of Siegel's theorem: integral points on elliptic curves and Catalan curves, J. Reine Angew. Math. 378 (1987), 60-100.
    MathSciNet     CrossRef

  21. I. M. Vinogradov, Elements of number theory, Dover Publications, Inc., New York, 1954.
    MathSciNet    

  22. I. M. Vinogradov, Elements of number theory (Russian), St. Petersburg, 2004.

Glasnik Matematicki Home Page