Glasnik Matematicki, Vol. 53, No. 2 (2018), 229-238.
TOTALLY REAL THUE INEQUALITIES OVER IMAGINARY QUADRATIC FIELDS
István Gaál, Borka Jadrijević and László Remete
University of Debrecen,  Mathematical Institute,
H-4002 Debrecen Pf.400.,  Hungary
e-mail: gaal.istvan@unideb.hu
University of Split,  Faculty of Science,
Rudjera Boškovića 33, 21000 Split,  Croatia
e-mail: borka@pmfst.hr
University of Debrecen,  Mathematical Institute,
H-4002 Debrecen Pf.400.,  Hungary
e-mail: remete.laszlo@science.unideb.hu
Abstract.  
Let F(x,y) be an irreducible binary form of degree ≥ 3 with
integer coefficients and with real roots. Let M be an imaginary quadratic field
with ring of integers ℤM. Let K>0.
We describe an efficient method how to reduce the resolution of the relative Thue
inequalities
|F(x,y)|≤ K   (x,y
 ℤM)
to the resolution of absolute Thue inequalities of type
|F(x,y)|≤ k   (x,y
 ℤ).
We illustrate our method with an explicit example.
2010 Mathematics Subject Classification.   11D59, 11D57
Key words and phrases.   Relative Thue equations, Thue inequalities
Full text (PDF) (free access)
DOI: 10.3336/gm.53.2.02
References:
- 
A. Baker, Transcendental number theory, Cambridge University Press, Cambridge, 1990.
MathSciNet    
 - 
W. Bosma, J. Cannon and C. Playoust,
The Magma algebra system.I. The user language,
J. Symbolic Comput. 24 (1997), 235-265.
MathSciNet    
CrossRef
 - 
B. W. Char, K. O. Geddes, G. H. Gonnet, M. B. Monagan, S. M. Watt,
MAPLE, Reference Manual, Watcom Publications, Waterloo, Canada, 1988.
 - 
M. Daberkow, C. Fieker, J. Klüners, M. Pohst, K.Roegner and K. Wildanger, KANT V4, Computational algebra and number theory, J. Symbolic Comput. 24 (1997), 267-283. http://www.math.tu-berlin.de/~kant/.
MathSciNet    
CrossRef
 - 
I. Gaál,
Computing elements of given index in totally complex cyclic
sextic fields,
J. Symbolic Comput. 20 (1995), 61-69.
MathSciNet    
CrossRef
 - 
I. Gaál, Diophantine equations and power integral bases,
Birkhäuser, Boston, 2002.
MathSciNet    
 - 
I. Gaál and M. Pohst, On the resolution of relative Thue equations, Math. Comput. 71 (2002), 429-440.
MathSciNet    
CrossRef
 - 
S. V. Kotov and V. G. Sprindžuk, An effective analysis of the Thue-Mahler equation in relative fields (Russian),
Dokl. Akad. Nauk. BSSR 17 (1973), 393-395, 477.
MathSciNet    
 - 
A. Pethő, On the resolution of Thue inequalities,
J. Symbolic Comput. 4 (1987), 103-109.
MathSciNet    
CrossRef
 - 
A. Thue, Über Annäherungswerte algebraischer Zahlen,
J. Reine Angew. Math. 135 (1909), 284-305.
MathSciNet    
CrossRef
 
Glasnik Matematicki Home Page