Glasnik Matematicki, Vol. 53, No. 1 (2018), 205-220.
η-RICCI SOLITONS IN (ε)-ALMOST PARACONTACT METRIC MANIFOLDS
Adara Monica Blaga, Selcen Yüksel Perktaş, Bilal Eftal Acet and Feyza Esra Erdoğan
Department of Mathematics, West University of Timişoara, 300223 Timişoara, România
e-mail: adarablaga@yahoo.com
Department of Mathematics, Adıyaman University, 02040 Adıyaman, Turkey
e-mail: sperktas@adiyaman.edu.tr
Department of Mathematics, Adıyaman University, 02040 Adıyaman, Turkey
e-mail: eacet@adiyaman.edu.tr
Department of Elementary Education, Adıyaman University, 02040 Adıyaman, Turkey
e-mail: ferdogan@adiyaman.edu.tr
Abstract.
The object of this paper is to study η -Ricci
solitons on ( ε ) -almost paracontact metric
manifolds. We investigate η -Ricci solitons in the case when its
potential vector field is exactly the characteristic vector field ξ of
the ( ε ) -almost paracontact metric manifold and
when the potential vector field is torse-forming. We also study Einstein-like and ( ε )-para Sasakian manifolds admitting η-Ricci
solitons. Finally we obtain some results for η -Ricci solitons on ( ε )-almost paracontact metric manifolds with a special view towards
parallel symmetric (0,2) -tensor fields.
2010 Mathematics Subject Classification.
53C15, 53C25,
53C40, 53C42, 53C50.
Key words and phrases. ( ε ) -almost
paracontact metric manifold, ( ε ) -para Sasakian
manifold, Einstein-like manifold, η -Ricci soliton.
Full text (PDF) (free access)
DOI: 10.3336/gm.53.1.14
References:
- M. M. Akbar and E. Woolgar, Ricci solitons
and Einstein-scalar field theory, Classical Quantum Gravity 26 (2009), 055015, 14pp.
MathSciNet
CrossRef
- A. Bejancu and K. L. Duggal, Real hypersurfaces of
indefinite Kaehler manifolds, Internat. J. Math. Math. Sci. 16 (1993),
545-556.
MathSciNet
CrossRef
- A. M. Blaga, η-Ricci solitons on Lorentzian
para-Sasakian manifolds, Filomat 30 (2016), 489-496.
MathSciNet
CrossRef
- A. M. Blaga, η-Ricci solitons on para-Kenmotsu
manifolds, Balkan J. Geom. Appl. 20 (2015), 1-13.
MathSciNet
- A. M. Blaga and M. Crasmareanu, Torse-forming η-Ricci solitons in almost paracontact η-Einstein geometry, Filomat 31 (2017), 499-504.
MathSciNet
CrossRef
- M. Brozos-Vazquez, G. Calvaruso, E. Garcia-Rio and
S. Gavino-Fernandez, Three-dimensional Lorentzian homogeneous Ricci solitons, Israel J. Math. 188 (2012), 385-403.
MathSciNet
CrossRef
- C. Calin and M. Crasmareanu, η-Ricci
solitons on Hopf Hypersurfaces in complex space forms, Rev. Roumaine Math. Pures Appl. 57 (2012), 55-63.
MathSciNet
- J. S. Case, Singularity theorems and the
Lorentzian splitting theorem for the Bakry Emery Ricci tensor, J. Geom. Phys. 60 (2010), 477-490.
MathSciNet
CrossRef
- J. T. Cho and M. Kimura, Ricci solitons and real
hypersurfaces in a complex space form, Tôhoku Math. J. (2) 61 (2009), 205-212.
MathSciNet
CrossRef
- U. C. De, Second order parallel tensors on
P-Sasakian manifolds, Publ. Math. Debrecen 49 (1996), 33-37.
MathSciNet
- L. P. Eisenhart, Symmetric tensors of the second
order whose first covariant derivatives are zero, Trans. Amer. Math. Soc.
25 (1923), 297-306.
MathSciNet
CrossRef
- D. H. Friedan, Nonlinear models in 2+ε dimensions, Ann. Phys. 163 (1985), 318-419.
MathSciNet
CrossRef
- R. S. Hamilton, The Ricci flow on surfaces,
in: Mathematics and general relativity, Amer. Math. Soc. Providence, 1988, 237-262.
MathSciNet
CrossRef
- R. S. Hamilton, Three-manifolds with positive
Ricci curvature, J. Differential Geom. 17 (1982), 255-306.
MathSciNet
CrossRef
- H. Levy, Symmetric tensors of the second order whose
covariant derivatives vanish, Ann. of Math. (2) 27 (1925), 91-98.
MathSciNet
CrossRef
- Z. Li, Second order parallel tensors on
P-Sasakian manifolds with a coefficient k, Soochow J. Math. 23 (1997), 97-102.
MathSciNet
- K. Matsumoto, On Lorentzian paracontact manifolds,
Bull. Yamagata Univ. Natur. Sci. 12 (1989), 151-156.
MathSciNet
- S. Sasaki, On differentiable manifolds with
certain structures which are closely related to almost contact structure I,
Tôhoku Math. J. (2) 12 (1960), 459-476.
MathSciNet
CrossRef
- I. Satō, On a structure similar to the almost
contact structure, Tensor (N.S.) 30 (1976), 219-224.
MathSciNet
- R. Sharma, On Einstein-like p-Sasakian
manifold, Mat. Vesnik 6(19)(34) (1982), 177-184.
MathSciNet
- R. Sharma, Second order parallel tensor in real
and complex space forms, Internat. J. Math. Math. Sci. 12 (1989),
787-790.
MathSciNet
CrossRef
- R. Sharma, Second order parallel tensors on
contact manifolds, Algebras Groups Geom. 7 (1990), 145-152.
MathSciNet
- R. Sharma, Second order parallel tensors on
contact manifolds. II, C. R. Math. Rep. Acad. Sci. Canada 13 (1991),
259-264.
MathSciNet
- T. Takahashi, Sasakian manifold with
pseudo-Riemannian metric, Tôhoku Math. J. (2) 21 (1969), 271-290.
MathSciNet
CrossRef
- M. M. Tripathi, E. Kılıç, S. Y. Perktaş and S. Keleş, Indefinite almost paracontact metric
manifolds, Int. J. Math. Math. Sci. (2010), 846195, 19 pp.
MathSciNet
CrossRef
- S. Y. Perktaş, E. Kılıç, M. M.
Tripathi, and S. Keleş, On (ε )-para Sasakian 3-manifolds, Int. J. Pure Appl. Math. 77 (2012), 485-499.
link
Glasnik Matematicki Home Page