Glasnik Matematicki, Vol. 53, No. 1 (2018), 179-186.

GLOBALLY EXACT OPERATOR SPACES

Massoud Amini, Alireza Medghalchi and Hamed Nikpey

Department of Mathematics, Tarbiat Modares University, Tehran 14115-134, Iran and School of Mathematics, Institute for Research in Fundamental Sciences (IPM), Tehran 19395-5746, Iran
e-mail: mamini@modares.ac.ir, mamini@ipm.ir

Department of Mathematics, Kharazmi University, 50 Taleghani Avenue, Tehran 15618, Iran
e-mail: a_medghalchi@khu.ac.ir

Department of Mathematics, Shahid Rajaei Teacher Training University, Tehran 16785-136, Iran
e-mail: hamednikpey@gmail.com


Abstract.   Exact operator spaces are known to be locally reflexive, but the converse is not true. We introduce the notion of global exactness and show that it is equivalent to reflexivity for injective operator spaces.

2010 Mathematics Subject Classification.   46L07, 47L25.

Key words and phrases.   Operator space, injective operator space, injective envelope, exact operator space, globally exact operator space, local reflexivity.


Full text (PDF) (access from subscribing institutions only)

DOI: 10.3336/gm.53.1.12


References:

  1. M. Amini, A. R. Medghalchi and H. Nikpey, On tensor products of injective operator spaces, Houston J. Math. 43 (2017), 1147-1163.
    MathSciNet    

  2. R. Archbold and C. Batty, C*-tensor norms and slice maps, J. London Math. Soc. (2) 22 (1980), 127-138.
    MathSciNet     CrossRef

  3. D. Blecher and C. Le Merdy, Operator algebras and their modules-an operator space approach, London Mathematical Society Monographs, New Series 30, Oxford University Press, Oxford, 2004.
    MathSciNet     CrossRef

  4. D. Blecher and V. I. Paulsen, Multipliers of operator spaces and the injective envelope, Pacific J. Math. 200 (2001), 1-17.
    MathSciNet     CrossRef

  5. J. B. Conway, A course in functional analysis, Springer-Verlag, Berlin, 1990.
    MathSciNet    

  6. Z. Dong and Z.-J. Ruan, Weak* exactness for dual operator spaces, J. Funct. Anal. 253 (2007), 373-397.
    MathSciNet     CrossRef

  7. E. G. Effros and U. Haagerup, Lifting problems and local reflexivity for C*-algebras, Duke Math. J. 52 (1985), 103-128.
    MathSciNet     CrossRef

  8. E. G. Effros, M. Junge and Z.-J. Ruan, Integral mappings and the principle of local reflexivity for noncommutative L1-spaces, Ann. of Math. (2) 151 (2000), 59-92.
    MathSciNet     CrossRef

  9. E. G. Effros, N. Ozawa and Z.-J. Ruan, On injectivity and nuclearity for operator spaces, Duke Math. J. 110 (2001), 489-521.
    MathSciNet     CrossRef

  10. E. Effros and Z.-J. Ruan, Operator spaces, Oxford University Press, New York, 2000.
    MathSciNet    

  11. E. G. Effros and Z.-J. Ruan, On the abstract characterization of operator spaces, Proc. Amer. Math. Soc. 119 (1993), 579-584.
    MathSciNet     CrossRef

  12. U. Haagerup, Quasi traces on exact C*-algebra are traces, Math. Reports of the Academy of Science of the Royal Society of Canada, arXiv:1403.7653.

  13. M. Hamana, Injective envelopes of operator systems, Publ. RIMS, Kyoto Univ. 15 (1979), 773-785.
    MathSciNet     CrossRef

  14. M. Hamana, Injective envelopes of dynamical systems, in: Operator algebras and operator theory, Longman, Harlow, 1992, 69-77.

  15. E. Kirchberg, The Fubini theorem for exact C*-algebras, J. Operator Theory 10 (1983), 3-8.
    MathSciNet    

  16. E. Kirchberg, Exact C*-algebras, tensor products, and the classification of purely infinite algebras, in: Proceedings of the International Congress of Mathematicians, vols. 1, 2, Zurich, 1994, Birkhäuser, Basel, 1995, 943-954.
    MathSciNet    

  17. E. Kirchberg, On subalgebras of the CAR-algebra, J. Funct. Anal. 129 (1995), 35-63.
    MathSciNet     CrossRef

  18. A. R. Medghalchi and H. Nikpey, Characterizing injective operator space V for which I11(V ) ≅ B(H), Publ. Math. Debrecen 82 (2013), 21-30.
    MathSciNet     CrossRef

  19. G. Pisier, Exact operator spaces, in: Recent advances in operator algebras, Orlèan, 1992, Astèrisque 232 (1995), 159-186.
    MathSciNet    

  20. G. Pisier, Introduction to operator space theory, Cambridge Univ. Press, Cambridge, 2003.
    MathSciNet     CrossRef

  21. A. R. Robertson, Injective matricial Hilbert spaces, Math. Proc. Cambridge Philos. Soc. 110 (1991), 183-190.
    MathSciNet     CrossRef

  22. A. G. Robertson and S. Wassermann, Completely bounded isomorphism of injective operator systems, Bull. London Math. Soc. 21 (1989), 285-290.
    MathSciNet     CrossRef

  23. H. Rosenthal, The complete separable extension property, J. Operator Theory 43 (2000), 329-374.
    MathSciNet    

  24. Z.-J. Ruan, Injectivity of operator spaces, Trans. Amer. Math. Soc. 315 (1989), 89-104.
    MathSciNet     CrossRef

  25. R. R. Smith, Finite dimensional injective operator spaces, Proc. Amer. Math. Soc. 128 (2000), 3461-3462.
    MathSciNet     CrossRef

  26. M. Takesaki, Theory of operator algebras. I, Springer, New York, 2002.
    MathSciNet    

  27. S. Wassermann, Exact C*-algebras and related topics, Seoul National University, Seoul, 1994.
    MathSciNet    

  28. G. Wittstock, Extension of completely bounded C*-module homomorphisms, in: Operator algebras and group representations, Vol. II, Pitman, Boston, 1984, 238-250.
    MathSciNet    

Glasnik Matematicki Home Page