Glasnik Matematicki, Vol. 53, No. 1 (2018), 153-177.

SUMS OF MATRIX-VALUED WAVE PACKET FRAMES IN L2(ℝd,ℂs× r)

Jyoti, Deepshikha, Lalit K. Vashisht and Geetika Verma

Department of Mathematics, University of Delhi, Delhi-110007, India
e-mail: jyoti.sheoran3@gmail.com
e-mail: dpmmehra@gmail.com
e-mail: lalitkvashisht@gmail.com

Centre for Industrial and Applied Mathematics, School of Information Technology and Mathematical Sciences, University of South Australia, Adelaide, Australia
e-mail: Geetika.Verma@unisa.edu.au


Abstract.   The purpose of this paper is to first show relations between wave packet frame bounds and the scalars associated with finite sum of matrix-valued wave packet frames for the matrix-valued function space L2(ℝd, ℂs× r). A sufficient condition with explicit wave packet frame bounds for finite sum of matrix-valued wave packet frames in terms of scalars and frame bounds associated with the finite sum of frames is given. An optimal estimate of wave packet frame bounds for the finite sum of matrix-valued wave packet frames is presented. In the second part, we show that the rate of convergence of the frame algorithm can be increased by using frame bounds and scalars associated with the finite sum of frames. Finally, a necessary and sufficient condition for finite sum of matrix-valued wave packet frames in terms of series associated with wave packet vectors is given.

2010 Mathematics Subject Classification.   42C15, 42C30, 42C40.

Key words and phrases.   Bessel sequence, frames, wave packet frames.


Full text (PDF) (access from subscribing institutions only)

DOI: 10.3336/gm.53.1.11


References:

  1. P. G. Casazza and G. Kutyniok, Finite frames. Theory and applications, Birkhäuser, 2013.
    MathSciNet     CrossRef

  2. P. G. Casazza, The art of frame theory, Taiwanese J. Math. 4 (2000), 129-201.
    MathSciNet     CrossRef

  3. P. G. Casazza and R. G. Lynch, A brief introduction to Hilbert space frame theory and its applications, in Finite frame theory, AMS, 2016, 1-51.
    MathSciNet    

  4. O. Christensen, An introduction to frames and Riesz bases, Birkhäuser, 2016.
    MathSciNet     CrossRef

  5. O. Christensen and A. Rahimi, Frame properties of wave packet systems in L2(ℝd), Adv. Comput. Math. 29 (2008), 101-111.
    MathSciNet     CrossRef

  6. A. Córdoba and C. Fefferman, Wave packets and Fourier integral operators, Comm. Partial Differential Equations 3 (1978), 979-1005.
    MathSciNet     CrossRef

  7. W. Czaja, G. Kutyniok and D. Speegle, The geometry of sets of parameters of wave packets, Appl. Comput. Harmon. Anal. 20 (2006), 108-125.
    MathSciNet     CrossRef

  8. I. Daubechies, A. Grossmann and Y. Meyer, Painless nonorthogonal expansions, J. Math. Phys. 27 (1986), 1271-1283.
    MathSciNet     CrossRef

  9. I. Daubechies, Ten lectures on wavelets, SIAM, Philadelphia, 1992.
    MathSciNet     CrossRef

  10. Deepshikha and L. K. Vashisht, Extension of Weyl-Heisenberg wave packet Bessel sequences to dual frames in L2(ℝ), J. Class. Anal. 8 (2016), 131-145.
    MathSciNet    

  11. Deepshikha and L. K. Vashisht, A note on discrete frames of translates in N, TWMS J. Appl. Eng. Math. 6 (2016), 143-149.
    MathSciNet    

  12. Deepshikha and L. K. Vashisht, Necessary and sufficient conditions for discrete wavelet frames in N, J. Geom. Phys. 117 (2017), 134-143.
    MathSciNet     CrossRef

  13. Deepshikha and L. K. Vashisht, Extension of Bessel sequences to dual frames in Hilbert spaces, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys. 79 (2017), 71-82.
    MathSciNet    

  14. R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc. 72 (1952), 341-366.
    MathSciNet     CrossRef

  15. Dao-Xin Ding, Generalized continuous frames constructed by using an iterated function system, J. Geom. Phys. 61 (2011), 1045-1050.
    MathSciNet     CrossRef

  16. K. Guo and D. Labate, Some remarks on the unified characterization of reproducing systems, Collect. Math. 57 (2006), 295-307.
    MathSciNet    

  17. C. Heil, A basis theory primer, Expanded edition, Birkhäuser, 2011.
    MathSciNet     CrossRef

  18. E. Hernández, D. Labate and G. Weiss, A unified characterization of reproducing systems generated by a finite family II, J. Geom. Anal. 12 (2002), 615-662.
    MathSciNet     CrossRef

  19. E. Hernández, D. Labate, G. Weiss and E. Wilson, Oversampling, quasi-affine frames, and wave packets, Appl. Comput. Harmon. Anal. 16 (2004), 111-147.
    MathSciNet     CrossRef

  20. Jyoti, Deepshikha, L. K. Vashisht and G. Verma, Matrix-valued wave packet frames in L2(ℝd, ℂs× r), Preprint.

  21. J. R. Holub, On a property of bases in a Hilbert space, Glasg. Math. J. 46 (2004), 177-180.
    MathSciNet     CrossRef

  22. S. K. Kaushik, G. Singh and Virender, On WH packets in L2(ℝ), Commun. Math. Appl. 3 (2012), 333-344.

  23. D. Labate, G. Weiss and E. Wilson, An approach to the study of wave packet systems, in Wavelets, frames and operator theory, Contemp. Math. 345, 2004, 215-235.
    MathSciNet     CrossRef

  24. M. Lacey and C. Thiele, Lp estimates on the bilinear Hilbert transform for 2 < p < ∞, Ann. of Math. (2) 146 (1997), 693-724.
    MathSciNet     CrossRef

  25. M. Lacey and C. Thiele, On Calderón's conjecture, Ann. Math. 149 (1999), 475-496.
    MathSciNet     CrossRef

  26. S. Obeidat, S. Samarah, P. G. Casazza and J. C. Tremain, Sums of Hilbert space frames, J. Math. Anal. Appl. 351 (2009), 579-585.
    MathSciNet     CrossRef

  27. K. Thirulogasanthar and W. Bahsoun, Frames built on fractal sets, J. Geom. Phys. 50 (2004), 79-98.
    MathSciNet     CrossRef

  28. L. K. Vashisht and Deepshikha, Weaving properties of generalized continuous frames generated by an iterated function system, J. Geom. Phys. 110 (2016), 282-295.
    MathSciNet     CrossRef

  29. S. Zhang and A. Vourdas, Analytic representation of finite quantum systems, J. Phys. A 37 (2004), 8349-8363.
    MathSciNet     CrossRef

Glasnik Matematicki Home Page