Glasnik Matematicki, Vol. 53, No. 1 (2018), 123-141.

EXISTENCE AND BOUNDEDNESS OF SOLUTIONS FOR SYSTEMS OF DIFFERENCE EQUATIONS WITH INFINITE DELAY

Juan J. Nieto, Abdelghani Ouahab and Mohammed A. Slimani

Instituto de Matemáticas, Facultade de Matemáticas, Universidade de Santiago de Compostela, Santiago de Compostela, 15782, Spain
e-mail: juanjose.nieto.roig@usc.es

Laboratory of Mathematics, University of Sidi Bel-Abbès, P.O. Box 89, 22000 Sidi Bel-Abbès, Algeria
e-mail: agh_ouahab@yahoo.fr

Laboratory of Mathematics, University of Sidi Bel-Abbès, P.O. Box 89, 22000 Sidi Bel-Abbès, Algeria
e-mail: sedikslimani@yahoo.fr


Abstract.   In this work we first establish some existence results followed by boundedness behavior and asymptotic behavior of solutions for systems of difference equations with infinite delay. Our approach is based on a Perov fixed point theorem in vector metric space. We apply our results to a system of Volterra difference equations.

2010 Mathematics Subject Classification.   34K45, 34A60.

Key words and phrases.   Difference equations, fixed point, infinite delay, boundedness, asymptotic behavior, matrix convergent to zero.


Full text (PDF) (access from subscribing institutions only)

DOI: 10.3336/gm.53.1.09


References:

  1. R. P. Agarwal, Difference equations and inequalities. Theory, methods and applications, Marcel Dekker, Inc., New York, 1992.
    MathSciNet    

  2. R. P. Agarwal, C. Cuevas and M. Frasson, Semilinear functional difference equations with infinite delay, Math. Comput. Modelling 55 (2012), 1083-1105.
    MathSciNet     CrossRef

  3. R. P. Agarwal, D. O'Regan and P. J. Y. Wong, Constant-sign periodic and almost periodic solutions of a system of difference equations, Comput. Math. Appl. 50 (2005), 1725-1754.
    MathSciNet     CrossRef

  4. R. P. Agarwal and J. Popenda, Periodic solutions of first order linear difference equations, Math. Comput. Modelling 22 (1995), 11-19.
    MathSciNet     CrossRef

  5. R. P. Agarwal and P. J. Y. Wong, Advanced topics in difference equations, Kluwer Academic Publishers Group, Dordrecht, 1997.
    MathSciNet     CrossRef

  6. W. Arendt, Semigroups and evolution equations: functional calculus, regularity and kernel estimates, in Evolutionary equations. Vol. I, North-Holland, Amsterdam, 2004, 1-85.
    MathSciNet    

  7. C. T. H Baker and Y. Song, Periodic solutions of discrete Volterra equations, Math. Comput. Simulation 64 (2004), 521-542.
    MathSciNet     CrossRef

  8. S. Blunck, Analyticity and discrete maximal regularity on Lp-spaces, J. Funct. Anal. 183 (2001), 211-230.
    MathSciNet     CrossRef

  9. S. Blunck, Maximal regularity of discrete and continuous time evolution equations, Studia Math. 146 (2001), 157-176.
    MathSciNet     CrossRef

  10. A. Caicedo, C. Cuevas, G. M. Mophou, and G. M. N'Guérékata, Asymptotic behavior of solutions of some semilinear functional differential and integro-differential equations with infinite delay in Banach spaces, J. Franklin Inst. 349 (2012), 1-24.
    MathSciNet     CrossRef

  11. F. Cardoso and C. Cuevas, Exponential dichotomy and boundedness for retarded functional difference equations, J. Difference Equ. Appl. 15 (2009), 261-290.
    MathSciNet     CrossRef

  12. C. Corduneanu, Almost periodic discrete processes, Libertas Math. 2 (1982), 159-169.
    MathSciNet    

  13. C. Cuevas, Weighted convergent and bounded solutions of Volterra difference systems with infinite delay, J. Differ. Equations Appl. 6 (2000), 461-480.
    MathSciNet     CrossRef

  14. C. Cuevas and L. Del Campo, An asymptotic theory for retarded functional difference equations, Comput. Math. Appl. 49 (2005), 841-855.
    MathSciNet     CrossRef

  15. C. Cuevas and M. Pinto, Convergent solutions of linear functional difference equations in phase space, J. Math. Anal. Appl. 277 (2003), 324-341.
    MathSciNet     CrossRef

  16. C. Cuevas, and C. Vidal, Discrete dichotomies and asymptotic behavior for abstract retarded functional difference equations in phase space, J. Difference Equ. Appl. 8 (2002), 603-640.
    MathSciNet     CrossRef

  17. C. Cuevas and C. Vidal, A note on discrete maximal regularity for functional difference equations with infinite delay, Adv. Difference Equ. (2006), Art. 97614, 1-11.
    MathSciNet    

  18. B. De Andrade and C. Cuevas, S-asymptotically ω-periodic and asymptotically ω-periodic solutions to semi-linear Cauchy problems with non-dense domain, Nonlinear Anal. 72 (2010), 3190-3208.
    MathSciNet     CrossRef

  19. L. Del Campo, M. Pinto and C. Vidal, Almost and asymptotically almost periodic solutions of abstract retarded functional difference equations in phase space, J. Difference Equ. Appl. 17 (2011), 915-934.
    MathSciNet     CrossRef

  20. S. Elaydi, S. Murakami and E. Kamiyama, Asymptotic equivalence for difference equations with infinite delay, J. Differ. Equations Appl. 5 (1999), 1-23.
    MathSciNet     CrossRef

  21. A. Halanay, Solutions périodiques et presque-périodiques des systèmes d'équations aux differences finies, Arch. Rational Mech. Anal. 12 (1963), 134-149.
    MathSciNet     CrossRef

  22. Y. Hamaya, Existence of an almost periodic solution in a difference equation with infinite delay, J. Difference Equ. Appl. 9 (2003), 227-237.
    MathSciNet     CrossRef

  23. H. R. Henríquez, M. Pierri and P. Táboas, On S-asymptotically ω-periodic functions on Banach spaces and applications, J. Math. Anal. Appl. 343 (2008), 1119-1130.
    MathSciNet     CrossRef

  24. H. Matsunaga and S. Murakami, Some invariant manifolds for functional difference equations with infinite delay, J. Difference Equ. Appl. 10 (2004), 661-689.
    MathSciNet     CrossRef

  25. H. Matsunaga and S. Murakami, Asymptotic behavior of solutions of functional difference equations, J.Math. Anal. Appl. 305 (2005), 391-410.
    MathSciNet     CrossRef

  26. S. Murakami, Representation of solutions of linear functional difference equations in phase space, in Proceedings of the Second World Congress of Nonlinear Analysts, Part 2 (Athens, 1996), Nonlinear Anal. 30 (1997), 1153-1164.
    MathSciNet     CrossRef

  27. A. I. Perov, On the Cauchy problem for a system of ordinary differential equations, Pvibliž. Metod. Rešen Differencial. Uvavnen. Vyp. 2 (1964), 115-134 (in Russian).
    MathSciNet    

  28. Y. Song, Periodic and almost periodic solutions of functional difference equations with finite delay, Adv. Difference Equ. (2007), Art. ID 68023, 15 pp.
    MathSciNet    

  29. Y. Song, Asymptotically almost periodic solutions of nonlinear Volterra difference equations with unbounded delay, J. Difference Equ. Appl. 14 (2008), 971-986.
    MathSciNet     CrossRef

  30. Y. Song, Positive almost periodic solutions of nonlinear discrete systems with finite delay, Comput. Math. Appl. 58 (2009), 128-134.
    MathSciNet     CrossRef

  31. S. Sugiyama, On periodic solutions of difference equations, Bull. Sci. Engrg. Res. Lab. Waseda Univ. 52 (1971), 89-94.

  32. R. S. Varga, Matrix iterative analysis, Springer-Verlag, Berlin, 2000.
    MathSciNet     CrossRef

  33. C. Vidal, Existence of periodic and almost periodic solutions of abstract retarded functional difference equations in phase spaces, Adv. Difference Equ. (2009), Art. ID 380568, 19 pp.
    MathSciNet    

Glasnik Matematicki Home Page