Glasnik Matematicki, Vol. 52, No. 2 (2017), 377-410.

LOCAL ASYMPTOTIC MIXED NORMALITY OF APPROXIMATE MAXIMUM LIKELIHOOD ESTIMATOR OF DRIFT PARAMETERS IN DIFFUSION MODEL

Snježana Lubura Strunjak and Miljenko Huzak

Department of Mathematics, Faculty of Science, University of Zagreb, Bijenička 30, 10 000 Zagreb, Croatia
e-mail: snjezana.lubura.strunjak@math.hr
e-mail: miljenko.huzak@math.hr

Abstract.   We assume that the diffusion X satisfies a stochastic differential equation of the form: dXt=μ(Xt,θ)dt+σ0ν(Xt)dWt, with unknown drift parameter θ and known diffusion coefficient parameter σ0. We prove that approximate maximum likelihood estimator of drift parameter θ n obtained from discrete observations (Xn,0≤ i≤ n) along fixed time interval [0,T], and when Δn =T/n tends to zero, is locally asymptotic mixed normal, with covariance matrix which depends on MLE obtained from continuous observations (Xt,0≤ t≤ T) along fixed time interval [0,T], and on path (Xt,0≤ t≤ T).

2010 Mathematics Subject Classification.   62M05, 62F12, 60J60.

Key words and phrases.   Asymptotic mixed normality, diffusion processes, discrete observation, parameter estimation.


Full text (PDF) (free access)

DOI: 10.3336/gm.52.2.13


References:

  1. D. J. Aldous and G. K. Eagleson, On mixing and stability of limit theorems, Ann. Probability 6 (1978) 325-331.
    MathSciNet     CrossRef

  2. P. Billingsley, Convergence of probability measures, 2nd edn. Wiley and Sons, New York, 1999.
    MathSciNet    

  3. B. M. Brown and J. I. Hewitt, Asymptotic likelihood theory for diffusion processes, J. Appl. Probab. 12 (1975), 228-238.
    MathSciNet     CrossRef

  4. D. Dacunha-Castelle and D. Florens-Zmirou, Estimation of the coefficients of a diffusion from discrete observations, Stochastics 19 (1986), 263-284.
    MathSciNet     CrossRef

  5. P. D. Feigin, Maximum likelihood estimation for continuous-time stochastic processes Adv. in Appl. Probab. 8 (1976), 712-736.
    MathSciNet     CrossRef

  6. D. Florens-Zmirou, Approximate discrete time shemes for statistics of diffusion processes, Statistics 20 (1989), 547-557.
    MathSciNet     CrossRef

  7. M. Huzak, Selection of diffusion growth process and parameter estimation from discrete observation, Ph.D. thesis, University of Zagreb, (in Croatian), 1997.

  8. M. Huzak, Parameter estimation of diffusion models, Math. Commun. 3 (1998), 129-134.
    MathSciNet    

  9. M. Huzak, A general theorem on approximate maximum likelihood estimation, Glas. Mat. Ser. III 36(56) (2001), 139-153.
    MathSciNet    

  10. M. Huzak, Estimating a class of diffusions from discrete observations via approximate maximum likelihood method, Statistics, to appear.

  11. J. Jacod, On continuous conditional Gaussian martingales and stable convergence in law, in: Séminaire de probabilitiés (Strasbourg), XXXI, Lecture Notes in Math. 1655, Springer, Berlin, 1997, 232-246.
    MathSciNet    

  12. J. Jacod and P. Protter, Discretization of processes, Springer, Heidelberg, 2012.
    MathSciNet    

  13. J. Jacod and A. N. Shiryaev, Limit theorems for stochastic processes, Springer-Verlag, Berlin, 2003.
    MathSciNet    

  14. M. Kessler, Estimation of an Ergodic Diffusion from Discrete Observations, Scand. J. Statist. 24 (1997), 211-229.
    MathSciNet     CrossRef

  15. A. LeBreton, On continuous and discrete sampling for parameter estimation in diffusion type processes, Math. Programming Stud. 5 (1976), 124-144.
    MathSciNet     CrossRef

  16. R. S. Liptser and A. N. Shiryaev, Statistics of random processes II. Applications, Springer-Verlag, New York-Heidelberg, 1978.
    MathSciNet    

  17. P. Protter (2004). Stochastic integration and differential equations, Springer-Verlag, Berlin, 2004.
    MathSciNet    

  18. A. Rényi, On stable sequences of events, Sankhya Ser. A 25 (1963), 293-302.
    MathSciNet    

  19. D. Revuz and M. Yor, Continuous martingales and Brownian motion, Springer-Verlag, Berlin, 1999.
    MathSciNet    

  20. L. C. G. Rogers and D. Williams, Diffusion, Markov processes, and martingales, Vol. 2. Itô calculus. John Wiley & Sons, Ltd., New York, 1987.
    MathSciNet    

Glasnik Matematicki Home Page