Glasnik Matematicki, Vol. 52, No. 2 (2017), 275-288.


Ana Prlić

Department of Mathematics, University of Zagreb, 10 000 Zagreb, Croatia

Abstract.   Let G be the Lie group SOe(4,1), with maximal compact subgroup K = S(O(4) × O(1))e≅ SO(4). Let 𝔤 =𝔰𝔬(5,ℂ) be the complexification of the Lie algebra 𝔤0 = 𝔰𝔬(4,1) of G, and let U(𝔤) be the universal enveloping algebra of 𝔤. Let 𝔤 = 𝔨 ⊕ 𝔭 be the Cartan decomposition of 𝔤, and C(𝔭) the Clifford algebra of 𝔭 with respect to the trace form B(X, Y) = tr(XY) on 𝔭. In this paper we give explicit generators of the algebra (U(𝔤) ⊗ C(𝔭))K.

2010 Mathematics Subject Classification.   22E47, 22E46.

Key words and phrases.   Lie group, Lie algebra, representation, Dirac operator, Dirac cohomology.

Full text (PDF) (access from subscribing institutions only)

DOI: 10.3336/gm.52.2.07


  1. M. Atiyah and W. Schmid, A geometric construction of the discrete series for semisimple Lie groups, Invent. Math. 42 (1977), 1-62.
    MathSciNet     CrossRef

  2. Harish-Chandra, Representations of semisimple Lie groups. II, Trans. Amer. Math. Soc. 76 (1954), 26–-65.
    MathSciNet     CrossRef

  3. J.-S. Huang and P. Pandžić, Dirac cohomology, unitary representations and a proof of a conjecture of Vogan, J. Amer. Math. Soc. 15 (2002), 185-202.
    MathSciNet     CrossRef

  4. J.-S. Huang and P. Pandžić, Dirac Operators in Representation Theory, Mathematics: Theory and Applications, Birkhäuser, Boston, MA 2006.

  5. H. Kraljević, K-structure of U(𝔤) for 𝔰𝔲(n,1) and 𝔰𝔬(n,1), arXiv:1611.07900v1.

  6. P. Pandžić and D. Renard, Dirac induction for Harish-Chandra modules, J. Lie Theory 20 (2010), 617-641.

  7. R. Parthasarathy, Dirac operator and the discrete series, Ann. of Math. 96 (1972), 1-30.
    MathSciNet     CrossRef

  8. A. Prlić, K-invariants in the algebra U(𝔤) ⊗ C(𝔭) for the group SU(2,1), Glas. Mat. Ser. III 50 (2015), 397-414.
    MathSciNet     CrossRef

  9. A. Prlić, Algebraic Dirac induction for nonholomorphic Discrete Series of SU(2,1), J. Lie Theory 26 (2016), no. 3, 889-910.

  10. D.A. Vogan, Jr., Dirac operators and unitary representations, 3 talks at MIT Lie groups seminar, Fall 1997.

Glasnik Matematicki Home Page