Glasnik Matematicki, Vol. 52, No. 2 (2017), 247-256.

CUBIC STRUCTURE

Vladimir Volenec, Zdenka Kolar-Begović and Ružica Kolar-Šuper

Department of Mathematics, University of Zagreb, Bijenička cesta 30, HR-10 000 Zagreb, Croatia
e-mail: volenec@math.hr

Department of Mathematics, University of Osijek, Trg Ljudevita Gaja 6, HR-31 000 Osijek, Croatia
e-mail: zkolar@mathos.hr

Faculty of Education, University of Osijek, Cara Hadrijana 10, HR-31 000 Osijek, Croatia
e-mail: rkolar@foozos.hr


Abstract.   In this paper we examine the relationships between cubic structures, totally symmetric medial quasigroups, and commutative groups. We prove that the existence of a cubic structure on the given set is equivalent to the existence of a totally symmetric medial quasigroup on this set, and it is equivalent to the existence of a commutative group on this set. We give also some interesting geometric examples of cubic structures. By means of these examples, each theorem that can be proved for an abstract cubic structure has a number of geometric consequences. In the final part of the paper, we prove also some simple properties of abstract cubic structures.

2010 Mathematics Subject Classification.   20N05.

Key words and phrases.   TSM-quasigroup, commutative group, ternary relation, cubic structure.


Full text (PDF) (access from subscribing institutions only)

DOI: 10.3336/gm.52.2.05


References:

  1. L. M. H. Etherington, Quasigroups and cubic curves, Proc. Edinburgh Math. Soc. (2) 14 (1964-65), 273-291.
    MathSciNet     CrossRef

  2. M. Khalid, Group law on the cubic curve, Irish Math. Soc. Bull. 60 (2007), 67-89.
    MathSciNet    

  3. N. S. Mendelsohn and R. Padmanabahan, Self-inscribed polygons with vertices on nonsingular cubic curves, Linear Algebra Appl. 114-115 (1989), 603-611.
    MathSciNet     CrossRef

  4. N. S. Mendelsohn, R. Padmanabhan and B. Wolk, Placement of the Desargues configuration on a cubic curve, Geom. Dedicata 40 (1991), 165-170.
    MathSciNet     CrossRef

  5. N. S. Mendelsohn, R. Padmanabhan and B. Wolk, Block configurations on real cubic curves, J. Combin. Theory Ser. A 58 (1991), 131-135.
    MathSciNet     CrossRef

  6. V. Metelka, Über gewisse ebene Konfigurationen (124,163), die auf den irreduziblen Kurven dritter Ordnung endliche Gruppoide bilden und über die Konfigurationen C12, Časopis P\uest. Mat. 95 (1970), 23-53.
    MathSciNet    

  7. R. Padmanabahan, Configuration theorems on cubic quasigroups, Finite geometries (Winnipeg, 1984), Lecture Notes in Pure and Appl. Math. 103, Dekker, New York 1985, 209-221.
    MathSciNet    

  8. V. Volenec, UV-conconical quadruples of points on a conic, Rad Jugoslav. Akad. Znan. Umjet. 428 (1987), 71-77.
    MathSciNet    

  9. V. Volenec, Concyclic or collinear points on a rational circular cubic or on a rational bicircular quartic, Rad Hrvatske Akad. Znan. Umjet. 467 (1994), 77-83.
    MathSciNet    

  10. B. L. van der Waerden, Einführung in die algebraische Geometrie, 2. Aufl., Springer, 1973.
    MathSciNet    

  11. F. Zirilli, C-struttura associata ad una cubica piana e C-struttura astratta, Ricerche Mat. 16 (1967), 202-232.
    MathSciNet    

Glasnik Matematicki Home Page