Glasnik Matematicki, Vol. 52, No. 2 (2017), 207-219.

ON THE INVERSE LIMITS OF T0-ALEXANDROFF SPACES

Paweł Bilski

Institute of Mathematics, Polish Academy of Sciences, 00-656 Warsaw, Poland
e-mail: pbilski@impan.pl

Abstract.   We show that if X is a locally compact, paracompact and Hausdorff space, then X can be realised as the subspace of all maximal points of the inverse limit of an inverse system of partial orders with an appropriate topology (equivalently T0-Alexandroff spaces). Then, the space X is homeomorphic to a deformation retract of that limit. Moreover, we extend results obtained by Clader and Thibault and show that if K is a simplicial complex, then its realisation |K| can be obtained as the subspace of all maximals of the limit of an inverse system of T0-Alexandroff spaces such that each of them is weakly homotopy equivalent to |K|. Moreover, if K is locally-finite-dimensional and |K| is considered with the metric topology, then this inverse system can be replaced by an inverse sequence.

2010 Mathematics Subject Classification.   06A06, 08B25, 55U10.

Key words and phrases.   Alexandroff space, inverse limit, locally compact space, paracompact space, partial order, simplicial complex, weak homotopy type.


Full text (PDF) (access from subscribing institutions only)

DOI: 10.3336/gm.52.2.01


References:

  1. J. Barmak, Algebraic topology of finite spaces and applications, Lecture Notes in Mathematics 2032, Springer, Heidelberg, 2011.
    MathSciNet     CrossRef

  2. E. Clader, Inverse limits of finite topological spaces, Homology, Homotopy Appl. 11 (2009), 223-227.
    MathSciNet     CrossRef

  3. R. Engelking, General topology, Heldermann Verlag, Berlin, 1989.
    MathSciNet    

  4. H. Edelsbrunner and J.L. Harer, Computational topology. An introduction, AMS, Providence, 2010.
    MathSciNet    

  5. S. Eilenberg and N. Steenrod, Foundations of algebraic topology, Princeton University Press, Princeton, New Jersey, 1952.
    MathSciNet    

  6. J. Flachsmeyer, Zur Spektralentwicklung topologisher Räume, Math. Ann. 144 (1961), 253-274.
    MathSciNet     CrossRef

  7. R. Fritsch and R.A. Piccinini, Cellular structures in topology, Cambridge University Press, Cambridge, 1990.
    MathSciNet     CrossRef

  8. J. P. May, Finite spaces and larger contexts, preprint.

  9. M. C. McCord, Singular homology and homotopy groups of finite topological spaces, Duke Math. J. 33 (1966), 465-474.
    MathSciNet     CrossRef

  10. K. Mine and K. Sakai, Subdivisions of simplicial complexes preserving the metric topology, Canad. Math. Bull. 55 (2012), 157-163.
    MathSciNet     CrossRef

  11. J. R. Munkres, Topology, Prentice Hall, Incorporated, 2000.

  12. J. R. Munkres, Elements of algebraic topology, Addison-Wesley Publishing Company, Menlo Park, 1984.
    MathSciNet    

  13. J. I. Nagata, Modern general topology, American Elsevier Publishing Co., New York, 1974.
    MathSciNet    

  14. K. Sakai, Small subdivisions of simplicial complexes with the metric topology, J. Math. Soc. Japan 63 (2011), 789-800.
    MathSciNet     CrossRef

  15. E. H. Spanier, Algebraic topology, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966.
    MathSciNet    

  16. R. E. Stong, Finite topological spaces, Trans. Amer. Math. Soc. 123 (1966), 325-340.
    MathSciNet     CrossRef

  17. M. J. Thibault, Homotopy theory of combinatorial categories, Ph.D Thesis, link.

  18. J. S. Wilson, Profinite groups, Oxford Univ. Press, New York, 1998.
    MathSciNet    

  19. J. H. C. Whitehead, Simplicial spaces, nuclei and m-groups, Proc. London Math. Soc. S2 45 (1939), 243-327.
    MathSciNet     CrossRef

  20. E. Wofsey, On the algebraic topology of finite spaces, link.

Glasnik Matematicki Home Page