& Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan

Department of Mathematics and Statistics, King Faisal University, College of Sciences, 31928 Al Ahsaa, Saudi Arabia
*e-mail:* `afelhi@kfu.edu.sa`
*e-mail:* `ssahmim@kfu.edu.sa`

**Abstract.**
Based on a new papers of Aydi et al. in [7, 8], where the concept of Hausdorff metric-like has been initiated, we introduce Suzuki type contractive multivalued mappings on metric-like spaces. We also establish several fixed point results involving such contractions. We show that many known fixed point results in literature are simple consequences of our theorems. Our obtained results are supported by some examples and an application.

**2010 Mathematics Subject Classification.**
47H10, 54H25.

**Key words and phrases.** Hausdorff metric-like, multi-valued mapping, fixed point.

DOI: 10.3336/gm.52.1.11

**References:**

- C. T. Aage and J. N. Salunke,
*The results on fixed points in dislocated and dislocated quasi-metric space,*Appl. Math. Sci. (Ruse)**2**(2008), 2941-2948.

MathSciNet - M. Abbas, B. Ali and C. Vetro,
*A Suzuki type fixed point theorem for a generalized multivalued mapping on partial Hausdorff metric spaces,*Topology Appl.**160**(2013), 553-563.

MathSciNet CrossRef - A. Amini-Harandi,
*Metric-like spaces, partial metric spaces and fixed points,*Fixed Point Theory Appl.**2012**, 2012:204, 10pp.

MathSciNet CrossRef - H. Aydi, M. Abbas and C. Vetro,
*Partial Hausdorff metric and Nadler's fixed point theorem on partial metric spaces,*Topology Appl.**159**(2012), 3234-3242.

MathSciNet CrossRef - H. Aydi, M. Abbas and C. Vetro,
*Common fixed points for multivalued generalized contractions on partial metric spaces,*Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM**108**(2014), 483-501.

MathSciNet CrossRef - H. Aydi and A. Felhi,
*On best proximity points for various*J. Nonlinear Sci. Appl.*α*-proximal contractions on metric-like spaces,**9**(2016), 5202-5218.

MathSciNet - H. Aydi, A. Felhi, E. Karapinar and S. Sahmim,
*Hausdorff metric-like, generalized Nadler's fixed point theorem on metric-like spaces and application,*Miskolc Math. Notes, in press. - H. Aydi, A. Felhi and S. Sahmim,
*Fixed points of multivalued nonself almost contractions in metric-like spaces,*Math. Sci. (Springer)**9**(2015), 103-108.

MathSciNet CrossRef - H. Aydi and E. Karapinar,
*Fixed point results for generalized*Electron. J. Differential Equations*α-ψ*-contractions in metric-like spaces and applications,**2015**, No. 133, 15pp.

MathSciNet - R. D. Daheriya, R. Jain and M. Ughade,
*Some fixed point theorem for expansive type mapping in dislocated metric space,*ISRN Math. Anal.**2012**, Art. ID 376832, 5 pp.

MathSciNet - R. George, R. Rajagopalan and S. Vinayagam
*Cyclic contractions and fixed points in dislocated metric spaces,*Int. J. Math. Anal. (Ruse)**7**(2013), 403-411.

MathSciNet CrossRef - A. Isufati,
*Fixed point theorems in dislocated quasi-metric space,*Appl. Math. Sci. (ruse)**4**(2010), 217-233.

MathSciNet - E. Karap\i nar and P. Salimi,
*Dislocated metric space to metric spaces with some fixed point theorems,*Fixed Point Theory Appl.**2013**(2013).

MathSciNet CrossRef - P. S. Kumari, W. Kumar and I. R. Sarma,
*Common fixed point theorems on weakly compatible maps on dislocated metric spaces,*Math. Sci. (Springer)**6**(2012), Art. 71, 5pp.

MathSciNet CrossRef - P. S. Kumari
*Some fixed point theorems in generalized dislocated metric spaces,*Math. Theory Model.**1**(2011), 4, 16-22. - S. G. Matthews,
*Partial metric topology,*in Proceedings of the 8th Summer Conference on General Topology and Applications. Annals of the New York Academy of Sciences**728**, 1994, 183-197

MathSciNet CrossRef - S. B. Nadler, Jr.,
*Multi-valued contraction mappings,*Pacific J. Math.**30**(1969), 475-488.

MathSciNet CrossRef - I. R. Sarma and P. S. Kumari,
*On dislocated metric spaces,*Int. J. Math. Arch.**3**(2012), 1, 72-77. - R. Shrivastava, Z. K. Ansari and M. Sharma,
*Some results on fixed points in dislocated and dislocated quasi-metric spaces,*J. Adv. Stud. Topol.**3**(2012), 25-31.

MathSciNet CrossRef - M. Shrivastava, K. Qureshi and A. D. Singh,
*A fixed point theorem for continuous mapping in dislocated quasi-metric spaces,*Int. J. Theor. Appl. Sci.**4**(2012), 1, 39-40. - K. Zoto, E. Hoxha and A. Isufati
*Some new results in dislocated and dislocated quasi-metric spaces,*Appl. Math. Sci. (Ruse)**6**(2012), 3519-3526.

MathSciNet