Glasnik Matematicki, Vol. 52, No. 1 (2017), 131-146.

DUAL FRAMES COMPENSATING FOR ERASURES

Ljiljana Arambašić and Damir Bakić

Department of Mathematics, Faculty of Science, University of Zagreb, 10 000 Zagreb, Croatia
e-mail: arambas@math.hr
e-mail: bakic@math.hr

Abstract.   We discuss the problem of recovering signal from frame coefficients with erasures. Such problems arise naturally from applications where some of the coefficients could be corrupted or erased during the data transmission. Provided that the erasure set satisfies the minimal redundancy condition, we construct a suitable synthesizing dual frame which enables us to perfectly reconstruct the original signal without recovering the lost coefficients. Such dual frames which compensate for erasures are described from various viewpoints.

2010 Mathematics Subject Classification.   42C15, 47A05.

Key words and phrases.   Frame, dual frame, erasure.


Full text (PDF) (access from subscribing institutions only)

DOI: 10.3336/gm.52.1.10


References:

  1. D. Bakić and T. Berić, On excesses of frames, Glas. Mat. Ser. III 50(70) (2015), 415-427.
    MathSciNet     CrossRef

  2. P. Boufounos and A. V. Oppenheim, Compensation of coefficients erasures in frame representations, Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing (ICASSP), May 14-19, 2006.
    CrossRef

  3. B. G. Bodman and V. I. Paulsen, Frames, graphs and erasures, Linear Algebra Appl. 404 (2005), 118-146.
    MathSciNet     CrossRef

  4. P. G. Casazza and J. Kovačević, Equal-norm tight frames with erasures, Adv. Comput. Math. 18 (2003), 387-430.
    MathSciNet     CrossRef

  5. P. G. Casazza and J. Kovačević, Finite frames, in Applied and numerical harmonic analysis (Theory and Applications), Springer, 2013.

  6. O. Christensen, An introduction to frames and Riesz bases, Birkhäuser, Boston, 2003.
    MathSciNet     CrossRef

  7. R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series, Trans. Amer. Math. Soc. 72 (1952), 341-366.
    MathSciNet     CrossRef

  8. V. K. Goyal, J. Kovačević and J. A. Kelner, Quantized frame expansions with erasures, Appl. Comput. Harmon. Anal. 10 (2001), 203-233.
    MathSciNet     CrossRef

  9. D. Han and D. R. Larson, Frames, bases and group representations, Mem. Amer. Math. Soc. 147 (2000), no. 697, 1-94.
    MathSciNet     CrossRef

  10. D. Han and W. Sun, Reconstruction of signals from frame coefficients with erasures at unknown locations, IEEE Trans. Inform. Theory 60 (2014), 4013-4025.
    MathSciNet     CrossRef

  11. R. Holmes and V. I. Paulsen, Optimal frames for erasures, Linear Algebra Appl. 377 (2004), 31-51.
    MathSciNet     CrossRef

  12. J. Kovačević and A. Chebira, Life beyond bases: The advent of frames, IEEE Signal Process. Mag. 24 (2007), 86-104.
    CrossRef

  13. D. Larson and S. Scholze, Signal reconstruction from frame and sampling erasures, J. Fourier Anal. Appl. 21 (2015), 1146-1167.
    MathSciNet     CrossRef

  14. J. Lopez and D. Han, Optimal dual frames for erasures, Linear Algebra Appl. 432 (2010), 471-482.
    MathSciNet     CrossRef

  15. J. Leng and D. Han, Optimal dual frames for erasures II, Linear Algebra Appl. 435 (2011), 1464-1472.
    MathSciNet     CrossRef

Glasnik Matematicki Home Page