Glasnik Matematicki, Vol. 52, No. 1 (2017), 115-130.

ON A NEW CLASS OF FUNCTIONAL SPACES WITH APPLICATION TO THE VELOCITY AVERAGING

Martin Lazar and Darko Mitrović

Department of Electrical Engineering and Computing, University of Dubrovnik, Ćira Carića 4, 20000 Dubrovnik, Croatia
e-mail: martin.lazar@unidu.hr

Faculty of Mathematics and Natural Sciences, University of Montenegro, Cetinjski put bb, 81000 Podgorica, Montenegro
e-mail: darkom@ac.me


Abstract.   We introduce a new family of functional spaces which incorporate Bochner spaces Lp(Rm; E), with E being an appropriate Banach space, and to which we extend the H-distributions. We use the developed theory to prove a general version of the velocity averaging lemma in a heterogeneous Lp, p ≤ 2 setting.

2010 Mathematics Subject Classification.   35A27, 46B50, 47G30.

Key words and phrases.   H-distributions, velocity averaging, non-degeneracy condition.


Full text (PDF) (access from subscribing institutions only)

DOI: 10.3336/gm.52.1.09


References:

  1. N. Antonić and D. Mitrović, H-distributions: an extension of H-measures to an Lp-Lq setting, Abstr. Appl. Anal. 2011, Art. ID 901084, 12 pp.
    MathSciNet     CrossRef

  2. P. Gérard, Microlocal defect measures, Comm. Partial Differential Equations 16 (1991), 1761-1794.
    MathSciNet     CrossRef

  3. F. Golse, P.-L. Lions, B. Perthame and R. Sentis, Regularity of the moments of the solution of a transport equation, J. Funct. Anal. 76 (1988), 110-125.
    MathSciNet     CrossRef

  4. L. Grafakos, Classical Fourier analysis, Springer, New York, 2008.
    MathSciNet    

  5. M. Lazar and D. Mitrović, The velocity averaging for a heterogeneous heat type equation, Math. Commun. 16 (2011), 271-282.
    MathSciNet    

  6. M. Lazar and D. Mitrović, Velocity averaging - a general framework, Dyn. of Partial Differ. Equ. 9 (2012), 239-260.
    MathSciNet     CrossRef

  7. M. Lazar and D. Mitrović, On an extension of a bilinear functional on Lp(Rd) × E to a Bochner space with an application to velocity averaging, C. R. Math. Acad. Sci. Paris 351 (2013), 261-264.
    MathSciNet     CrossRef

  8. M. Lazar and D. Mitrović, On the velocity averaging for equations with optimal heterogeneous rough coefficients, preprint available on arXiv, http://arxiv.org/pdf/1310.4285.pdf.

  9. E. Yu. Panov, Ultra-parabolic equations with rough coefficients. Entropy solutions and strong precompactness property, J. Math. Sci. (N.Y.) 159 (2009), 180-228.
    MathSciNet     CrossRef

  10. B. Perthame and P.E. Souganidis, A limiting case for velocity averaging, Ann. Sci. École Norm. Sup. (4) 31 (1998), 591-598.
    MathSciNet     CrossRef

  11. E. Tadmor and T. Tao, Velocity averaging, kinetic formulations, and regularizing effects in quasi-linear PDEs, Comm. Pure Appl. Math. 60 (2007), 1488-1521.
    MathSciNet     CrossRef

  12. L. Tartar, H-measures, a new approach for studying homogenisation, oscillation and concentration effects in partial differential equations, Proc. Roy. Soc. Edinburgh Sect. A 115 (1990), 193-230.
    MathSciNet     CrossRef

  13. L. Tartar, The general theory of homogenization: a personalized introduction, Springer-Verlag, Berlin, 2009.
    MathSciNet     CrossRef

  14. L. R. Volevich and B. P. Paneyakh, Certain spaces of generalized functions and embedding theorems, Russ. Math. Surv. 20 (1965), 1-73.
    CrossRef

  15. K. Yosida, Functional analysis, Springer-Verlag, Berlin-New York, 1980.
    MathSciNet    

Glasnik Matematicki Home Page