Glasnik Matematicki, Vol. 52, No. 1 (2017), 79-98.

QUASI-PARTICLE BASES OF PRINCIPAL SUBSPACES OF THE AFFINE LIE ALGEBRA OF TYPE G2(1)

Marijana Butorac

Department of Mathematics, University of Rijeka, Radmile Matejčić 2, 51 000 Rijeka, Croatia
e-mail: mbutorac@math.uniri.hr

Abstract.   The aim of this work is to construct the quasi-particle basis of principal subspace of standard module of highest weight 0 of level k≥ 1 of affine Lie algebra of type G2(1) by means of which we obtain the basis of principal subspace of generalized Verma module.

2010 Mathematics Subject Classification.   17B67, 17B69, 05A19.

Key words and phrases.   Affine Lie algebras, vertex operator algebras, principal subspaces, quasi-particle bases.


Full text (PDF) (access from subscribing institutions only)

DOI: 10.3336/gm.52.1.06


References:

  1. G. E. Andrews, The theory of partitions, Encyclopedia of Mathematics and Its Applications, Vol. 2, Addison-Wesley, 1976.
    MathSciNet    

  2. G. E. Andrews, Partitions and Durfee dissection, Amer. J. Math. 101 (1979), 735-742.
    MathSciNet     CrossRef

  3. E. Ardonne, R. Kedem and M. Stone, Fermionic characters and arbitrary highest-weight integrable r+1-modules, Comm. Math. Phys. 264 (2006), 427-464.
    MathSciNet     CrossRef

  4. M. Butorac, Combinatorial bases of principal subspaces for the affine Lie algebra of type B2(1), J. Pure Appl. Algebra 218 (2014), 424-447.
    MathSciNet     CrossRef

  5. M. Butorac, Quasi-particle bases of principal subspaces for the affine Lie algebras of type Bl(1) and Cl(1), Glas. Mat. Ser. III 51(71) (2016), 59-108.
    MathSciNet     CrossRef

  6. C. Calinescu, Intertwining vertex operators and certain representations of (n), Commun. Contemp. Math. 10 (2008), 47-79.
    MathSciNet     CrossRef

  7. C. Calinescu, Principal subspaces of higher-level standard (3)-modules, J. Pure Appl. Algebra 210 (2007), 559-575.
    MathSciNet     CrossRef

  8. C. Calinescu, J. Lepowsky and A. Milas, Vertex-algebraic structure of the principal subspaces of certain A(1)1-modules, I. Level one case, Internat. J. Math. 19 (2008), 71-92.
    MathSciNet     CrossRef

  9. C. Calinescu, J. Lepowsky and A. Milas, Vertex-algebraic structure of the principal subspaces of certain A(1)1 -modules, II. Higher-level case, J. Pure Appl. Algebra 212 (2008), 1928-1950.
    MathSciNet     CrossRef

  10. C. Calinescu, J. Lepowsky and A. Milas, Vertex-algebraic structure of the principal subspaces of level one modules for the untwisted affine Lie algebras of types A, D, E, J. Algebra 323 (2010), 167-192.
    MathSciNet     CrossRef

  11. C. Calinescu, J. Lepowsky and A. Milas, Vertex-algebraic structure of principal subspaces of standard A2(2)-modules, I, Internat. J. Math. 25 (2014), 1450063, 44 pp.
    MathSciNet     CrossRef

  12. C. Calinescu, A. Milas and M. Penn, Vertex algebraic structure of principal subspaces of basic A2n(2)-modules, J. Pure Appl. Algebra 220 (2016), 1752-1784.
    MathSciNet     CrossRef

  13. S. Capparelli, J. Lepowsky and A. Milas, The Rogers-Ramanujan recursion and intertwining operators, Commun. Contemp. Math. 5 (2003), 947-966.
    MathSciNet     CrossRef

  14. S. Capparelli, J. Lepowsky and A. Milas, The Rogers-Selberg recursions, the Gordon-Andrews identities and intertwining operators, Ramanujan J. 12 (2006), 379-397.
    MathSciNet     CrossRef

  15. E. Feigin, The PBW filtration, Represent. Theory 13 (2009), 165-181.
    MathSciNet     CrossRef

  16. B. L. Feigin and A. V. Stoyanovsky, Functional models of the representations of current algebras, and semi-infinite Schubert cells, (Russian) Funktsional. Anal. i Prilozhen. 28 (1994), 68-90, 96; translation in Funct. Anal. Appl. 28 (1994), 55-72.
    MathSciNet     CrossRef

  17. I. B. Frenkel, Y.-Z. Huang and J. Lepowsky, On axiomatic approaches to vertex operator algebras and modules, Memoirs of the Amer. Math. Soc. 104, (1993), no. 494, 64 pp.
    MathSciNet     CrossRef

  18. G. Georgiev, Combinatorial constructions of modules for infinite-dimensional Lie algebras, I. Principal subspace, J. Pure Appl. Algebra 112 (1996), 247-286.
    MathSciNet     CrossRef

  19. D. Gepner, New conformal theories associated with Lie algebras and their partition functions, Nuclear Phys. B 290 (1987), 10-24.
    MathSciNet     CrossRef

  20. M. Jerković and M. Primc, Quasi-particle fermionic formulas for (k, 3)-admissible configurations, Cent. Eur. J. Math. 10 (2012), 703-721.
    MathSciNet     CrossRef

  21. V. G. Kac, Infinite dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990.
    MathSciNet     CrossRef

  22. S. Kožić, Principal subspaces for quantum affine algebra Uq(A(1)n), J. Pure Appl. Algebra 218 (2014), 2119-2148.
    MathSciNet     CrossRef

  23. S. Kožić, Vertex operators and principal subspaces of level one for Uq(2), J. Algebra 455 (2016), 251-290.
    MathSciNet     CrossRef

  24. S. Kožić and M. Primc, Quasi-particles in the principal picture of 2 and Rogers-Ramanujan-type identities, preprint.

  25. J. Lepowsky and H.-S. Li, Introduction to vertex operator algebras and their representations, Birkhäuser, Boston, 2003.
    MathSciNet     CrossRef

  26. J. Lepowsky and M. Primc, Standard modules for type one affine Lie algebras, Lecture Notes in Math. 1052 (1984), 194-251.
    MathSciNet     CrossRef

  27. A. Meurman and M. Primc, Annihilating fields of standard modules of (2, C) and combinatorial identities, Mem. Amer. Math. Soc. 137 (1999), no. 652, 89pp.
    MathSciNet     CrossRef

  28. M. Penn and C. Sadowski, Vertex-algebraic structure of principal subspaces of basic D(3)4-modules, The Ramanujan Journal, to appear.

  29. M. Penn and C. Sadowski, Vertex-algebraic structure of principal subspaces of basic modules for twisted affine Kac-Moody Lie algebras of type A2n+1(2), Dn(2), E6(2), preprint.

  30. C. Sadowski, Presentations of the principal subspaces of the higher-level standard (3)-modules, J. Pure Appl. Algebra 219 (2015), 2300-2345.
    MathSciNet     CrossRef

  31. C. Sadowski, Principal subspaces of higher-level standard (n)-modules, Int. J. Math. 26 (2015), 1550053, 35 pp.
    MathSciNet     CrossRef

Glasnik Matematicki Home Page