Glasnik Matematicki, Vol. 51, No. 2 (2016), 475-490.

INDUCED MAPPINGS BETWEEN QUOTIENT SPACES OF n-FOLD HYPERSPACES OF CONTINUA

José G. Anaya, Félix Capulín, Miguel A. Lara and Fernando Orozco-Zitli

Universidad Autónoma del Estado de México, Facultad de Ciencias,, Instituto Literario No. 100, Col. Centro, C. P. 50000,, Toluca, Estado de México, México
e-mail: jgao@uaemex.mx
e-mail: fcapulin@gmail.com
e-mail: forozcozitli@gmail.com
e-mail: nanoji@live.com.mx

Abstract.   For a continuum X the hyperspace of nonempty closed subsets of X with at most n components is called the n-fold hyperspace Cn(X) and if m < n then Cm(X) ⊂ Cn(X) so it is possible to form a quotient space Cn(X)/Cm(X) identifying the set Cm(X) to a point in Cn(X). If f is a mapping from a continuum X onto a continuum Y there will be a induced mappings between Cn(X) and Cm(X) and between the quotient spaces Cn(X)/Cm(X) and Cn(Y)/Cm(Y). Now if a list of function properties that are of interest to continua theorists is considered, there will be natural questions about when these properties are passed on from the functions between the continua to the induced mappings between the hyperspaces or the induced mappings between the quotients of the hyperspaces. Many of these questions have been considered extensively for the hyperspaces so the main thing that is new here is the questions and answers about the quotient spaces and their induced mappings. Here we consider the following families of mappings: atomic, atriodic, confluent, hereditarily weakly confluent, joining, light, local homeomorphism, locally confluent, locally weakly confluent, monotone, open, OM, semi-confluent and weakly confluent.

2010 Mathematics Subject Classification.   54C05, 54C10, 54B20, 54B15.

Key words and phrases.   Continuum, hyperspace, induced mapping, quotient space.


Full text (PDF) (access from subscribing institutions only)

DOI: 10.3336/gm.51.2.13


References:

  1. J. Camargo, Openness of the induced map Cn(X)f, Bol. Mat. (N.S.) 16 (2009), 115-123.
    MathSciNet    

  2. J. Camargo and S. Macías, On strongly freely decomposable and induced maps, Glas. Mat. Ser. III 48(68) (2013), 429-442.
    MathSciNet     CrossRef

  3. F. Barragán, Induced maps on n-fold symmetric product suspensions, Topology Appl. 158 (2011), 1192-1205.
    MathSciNet     CrossRef

  4. J. J. Charatonik, Recent results on induced mappings between hyperspaces of continua, Topology. Proc. 22 (1997), 103-122.
    MathSciNet    

  5. J. J. Charatonik and W. J. Charatonik, Hereditarily weakly confluent induced mappings are homeomorphisms, Colloq. Math. 75 (1998), 195-203.
    MathSciNet    

  6. J. J. Charatonik and W. J. Charatonik, Lightness of induced mappings, Tsukuba J. Math. 22 (1998), 179-192.
    MathSciNet    

  7. J. J. Charatonik and W. J. Charatonik, Induced MO-mappings, Tsukuba J. Math. 23 (1999), 245-252.
    MathSciNet    

  8. J. J. Charatonik and W. J. Charatonik, Limit properties of induced mappings, Topology Appl. 100 (2000), 103-118.
    MathSciNet     CrossRef

  9. J.J. Charatonik and W.J. Charatonik, Inverse limits and openness of the induced mappings, Topology Appl. 114 (2001), 235-260.
    MathSciNet     CrossRef

  10. J. J. Charatonik and W. J. Charatonik Semi-confluent mappings, Math. Pannon. 12 (2001), 39-54.
    MathSciNet    

  11. J. J. Charatonik, W. J. Charatonik and A. Illanes, Openness of induced mappings, Topology Appl. 98 (1999), 67-80.
    MathSciNet     CrossRef

  12. J. J. Charatonik, A. Illanes and S. Macías, Induced mappings on the hyperspaces Cn(X) of a continuum X, Houston J. Math. 28 (2002), 781-805.
    MathSciNet    

  13. W. J. Charatonik, Arc approximation property and confluence of induced mappings, Rocky Mountain J. Math. 28 (1998), 107-154.
    MathSciNet     CrossRef

  14. W. J. Charatonik, Openness and monotoneity of induced mappings, Proc. Amer. Math. Soc. 127 (1999), 3729-3731.
    MathSciNet     CrossRef

  15. J. Dugundji, Topology, Allyn and Bacon, Inc., Boston, 1966.
    MathSciNet    

  16. G. Higuera and A. Illanes, Induced mappings on symmetric products, Topology Proc. 37 (2011), 367-401.
    MathSciNet    

  17. H. Hosokawa, Induced mappings between hyperspaces, Bull. Tokyo Gakugei Univ. (4) 41 (1989), 1-6.
    MathSciNet    

  18. H. Hosokawa, Mappings of hyperspaces induced by refinable mappings, Bull. Tokyo Gakugei Univ. (4) 42 (1990), 1-8.
    MathSciNet    

  19. H. Hosokawa, Induced mappings between hyperspaces. II, Bull. Tokyo Gakugei Univ. (4) 44 (1992), 1-7.
    MathSciNet    

  20. H. Hosokawa, Induced mappings on hyperspaces, Tsukuba J. Math. 21 (1997), 239-259.
    MathSciNet    

  21. H. Hosokawa, Induced mappings on hyperspaces. II, Tsukuba J. Math. 21 (1997), 773-783.
    MathSciNet    

  22. A. Illanes and S. B. Nadler, Jr., Hyperspaces. Fundamentals and recent advances, Marcel Dekker, New York, 1999.
    MathSciNet    

  23. S. Macías, On the hyperspaces Cn(X) of a continuum X, Topology Appl. 109 (2001), 237-256.
    MathSciNet     CrossRef

  24. T. Maćkowiak, Continuous mappings on continua, Dissertationes Math. (Rozprawy Mat.) 158 (1979), 95 pp.

  25. T. Maćkowiak, Singular arc-like continua, Dissertationes Math. (Rozprawy Mat.) 257 (1986), 40 pp.

  26. S. B. Nadler, Jr., A fixed point theorem for hyperspace suspensions, Houston J. Math. 5 (1979), 125-132.
    MathSciNet    

  27. S. B. Nadler, Jr., Hyperspaces of Sets, Marcel Dekker, New York, 1978.
    MathSciNet    

  28. S. B. Nadler Jr., Continuum theory. An introduction, Marcel Dekker, New York, 1992.
    MathSciNet    

Glasnik Matematicki Home Page