Glasnik Matematicki, Vol. 51, No. 2 (2016), 359-377.


Stipe Vidak

Department of Mathematics, University of Zagreb, 10 000 Zagreb, Croatia

Abstract.   Pentagonal quasigroups are IM-quasigroups in which the additional identity (ab · a) b · a=b holds. GS-quasigroups are IM-quasigroups in which the identity a(ab · c) · c=b holds. The relation between these two subclasses of IM-quasigroups is studied. The geometric concepts of GS-trapezoid and affine regular pentagon, previously defined and studied in GS-quasigroups, are now defined in a general pentagonal quasigroup. Along with the concepts of the regular pentagon and the centre of the regular pentagon, previously defined in pentagonal quasigroups, this enables formulations and proofs of some theorems of the Euclidean plane in a general pentagonal quasigroup. Among these theorems is the famous Napoleon-Barlotti theorem in the case n=5.

2010 Mathematics Subject Classification.   20N05.

Key words and phrases.   IM-quasigroup, pentagonal quasigroup, regular pentagon, affine regular pentagon.

Full text (PDF) (access from subscribing institutions only)

DOI: 10.3336/gm.51.2.06


  1. A. Barlotti, Intorno ad una generazione di un noto teorema relativo al triangolo, Boll. Uni. Math. Ital. 7 (1952), 182-185.

  2. M. Bombardelli and V. Volenec, Vectors and transfers in hexagonal quasigroup, Glas. Mat. Ser. III 42 (62) (2007), 363-373.
    MathSciNet     CrossRef

  3. E. Kitchen, Problem 1979, Crux Math. 20 (1994), 226.

  4. Z. Kolar and V. Volenec, GS-trapezoids in GS-quasigroups, Math. Commun. 7 (2002), 143-158.

  5. Z. Kolar-Begović and V. Volenec, Affine regular pentagons in GS-quasigroups, Quasigroups Related Systems 12 (2004), 103-112.

  6. V. Krčadinac and V. Volenec, A note on medial quasigroups, Math. Commun. 11 (2006), 83-85.

  7. V. Krčadinac, Napoleon's quasigroups, Math. Slovaca 61 (2011), 885-894.
    MathSciNet     CrossRef

  8. S. Vidak, Pentagonal quasigroups, Quasigroups Related Systems 22 (2014), 147-158.

  9. S. Vidak, Geometry of pentagonal quasigroups, Publ. Inst. Math. (Beograd) (N.S.) 99(113) (2016), 109-120.
    MathSciNet     CrossRef

  10. V. Volenec, Geometry of medial quasigroups, Rad Jugoslav. Akad. Znan. Umjet. 5 (1986), 79-91.

  11. V. Volenec, GS-quasigroups, Časopis Pěst. Mat. 115 (1990), 307-318.

  12. V. Volenec, Geometry of IM-quasigroups, Rad Hrvatske Akad. Znan. Umjet. 10 (1991), 139-146.

Glasnik Matematicki Home Page