Glasnik Matematicki, Vol. 51, No. 1 (2016), 197-221.

ON THE CORRESPONDENCE BETWEEN SPECTRA OF THE OPERATOR PENCIL A-Λ B AND OF THE OPERATOR B-1A

Ivica Nakić

Department of Mathematics, University of Zagreb, 10 000 Zagreb, Croatia
e-mail: nakic@math.hr

Abstract.   This paper is concerned with the reduction of the spectral problem for symmetric linear operator pencils to a spectral problem for the single operator. Also, a Rayleigh-Ritz-like bounds on eigenvalues of linear operator pencils are obtained.

2010 Mathematics Subject Classification.   47A56, 47A10.

Key words and phrases.   Linear operator pencil, spectrum, Krein spaces.


Full text (PDF) (access from subscribing institutions only)

DOI: 10.3336/gm.51.1.12


References:

  1. T. Ya. Azizov and I. S. Iokhvidov, Linear operators in spaces with an indefinite metric, John Wiley & Sons Ltd., Chichester, 1989.
    MathSciNet    

  2. T. Ya. Azizov, Operator theory in Krein spaces and operator pencils, In H. Helson, B. Sz.-Nagy, F.-H. Vasilescu, and Gr. Arsene, editors, Linear Operators in Function Spaces, volume 43 of Operator Theory: Advances and Applications, Birkhäuser Basel, 1990, 111-121.
    MathSciNet    

  3. H. Baumgärtel, Analytic perturbation theory for matrices and operators, Birkhäuser Basel, 1985.
    MathSciNet    

  4. P. Binding, D. Eschwé and H. Langer, Variational principles for real eigenvalues of self-adjoint operator pencils, Integral Equations Operator Theory 38 (2000), 190-206.
    MathSciNet     CrossRef

  5. P. Binding and B. Najman, A variational principle in Kreĭn space Trans. Amer. Math. Soc. 342 (1994), 489-499.
    MathSciNet     CrossRef

  6. P. Binding and B. Najman, The minimal index of a self-adjoint pencil, Glas. Mat. Ser. III 35(55) (2000) 25-44.
    MathSciNet    

  7. P. Binding, B. Najman and Q. Ye, A variational principle for eigenvalues of pencils of Hermitian matrices, Integral Equations Operator Theory 35 (1999) 398-422.
    MathSciNet     CrossRef

  8. J. Bognár, Indefinite inner product spaces, Springer-Verlag, New York, 1974.
    MathSciNet    

  9. P. A. Cojuhari, Estimates of the discrete spectrum of a linear operator pencil, J. Math. Anal. Appl. 326 (2007), 1394-1409.
    MathSciNet     CrossRef

  10. B. Ćurgus and H. Langer, A Kreĭn space approach to symmetric ordinary differential operators with an indefinite weight function, J. Differential Equations 79 (1989), 31-61.
    MathSciNet     CrossRef

  11. B. Ćurgus and B. Najman, Quasi-uniformly positive operators in Kreĭn space, in Operator theory and boundary eigenvalue problems (Vienna, 1993), Birkhäuser, Basel, 1995, 90-99.
    MathSciNet    

  12. E. B. Davies, Spectral theory and differential operators, Cambridge University Press, Cambridge, 1995.
    MathSciNet     CrossRef

  13. V. A. Derkach and M. M. Malamud, Generalized resolvents and the boundary value problems for Hermitian operators with gaps, J. Funct. Anal. 95 (1991), 1-95.
    MathSciNet     CrossRef

  14. A. Dijksma and H. S. V. de Snoo, Symmetric and selfadjoint relations in Kreĭn spaces. I, in Operators in indefinite metric spaces, scattering theory and other topics (Bucharest, 1985), Birkhäuser, Basel, 1987, 145-166.
    MathSciNet    

  15. A. Dijksma and H. Langer, Operator theory and ordinary differential operators, in Lectures on operator theory and its applications (Waterloo, ON, 1994), Amer. Math. Soc., Providence, 1996, 73-139.
    MathSciNet    

  16. M. V. Falaleev, The Cauchy problem for a degenerate heat equation in Banach spaces Differ. Uravn. 44 (2008), 1120-1130.
    MathSciNet     CrossRef

  17. Y. L. Gao, Z. Wang and H. Y. Wu, Spectrum of a self-adjoint operator pencil and its applications, Chinese Ann. Math. Ser. A 33 (2012), 101-112.
    MathSciNet    

  18. I. C. Gohberg and M. G. Kreĭn, The basic propositions on defect numbers, root numbers and indices of linear operators, Amer. Math. Soc. Transl. (2) 13 (1960), 185-264.
    MathSciNet    

  19. V. I. Gorbachuk and M. L. Gorbachuk, Boundary value problems for operator differential equations, Kluwer Academic Publishers Group, Dordrecht, 1991.
    MathSciNet     CrossRef

  20. A. N. Kočubeĭ, Extensions of J-symmetric operators, Teor. Funktsiĭ Funktsional. Anal. i Prilozhen. 31 (1979), 74-80, 167.
    MathSciNet    

  21. M.G. Krein, The theory of self-adjoint extensions of semi-bounded Hermitian transformations and its applications. I, Mat. Sb. 20(62) (1947), 431-495.
    MathSciNet    

  22. P. Lancaster, A. Shkalikov and Q. Ye, Strongly definitizable linear pencils in Hilbert space, Integral Equations and Operator Theory 17 (1993), 338-360.
    MathSciNet     CrossRef

  23. H. Langer, Spectral functions of definitizable operators in Kreĭn spaces, in Functional analysis (Dubrovnik, 1981), Springer, Berlin, 1982, 1-46.
    MathSciNet    

  24. H. Langer, R. Mennicken and C. Tretter, A self-adjoint linear pencil Q-Λ P of ordinary differential operators, Methods Funct. Anal. Topology 2 (1996), 38-54.
    MathSciNet    

  25. A. S. Marcus, Introduction to the spectral theory of polynomial operator pencils, translation of Mathematical monograph, vol. 71. Amer. Math. Soc., Providence, 1988.
    MathSciNet    

  26. A. B. Mingarelli, Indefinite Sturm-Liouville problems, in Ordinary and partial differential equations (Dundee, 1982), Springer, Berlin, 1982, 519-528.
    MathSciNet    

  27. K. Schmüdgen, Unbounded self-adjoint operators on Hilbert space, Springer, Dordrecht, 2012.
    MathSciNet     CrossRef

  28. P. Sorjonen, On linear relations in an indefinite inner product space, Ann. Acad. Sci. Fenn. Ser. A I Math. 4 (1979), 169-192.
    MathSciNet     CrossRef

  29. C. Tretter, Linear operator pencils A-Λ B with discrete spectrum, Integral Equations and Operator Theory 37 (2000), 357-373.
    MathSciNet     CrossRef

  30. O. Verdier, Reductions of operator pencils, Math. Comp. 83 (2014), 189-214.
    MathSciNet     CrossRef

  31. J. Weidmann, Lineare Operatoren in Hilberträumen. B. G. Teubner, Stuttgart, 1976.
    MathSciNet    

Glasnik Matematicki Home Page