Glasnik Matematicki, Vol. 51, No. 1 (2016), 165-173.
STABILITY OF CRITICAL POINTS OF QUADRATIC HOMOGENEOUS DYNAMICAL SYSTEMS
Hamza Boujemaa, Said El Qotbi and Hicham Rouiouih
Département de Mathématiques, Université Mohammed V-Rabat, 1014RP Rabat, Morocco
e-mail: boujemaa@fsr.ac.ma
Systèmes Dynamiques, A3D, Université Mohammed V-Rabat, 1014RP Rabat, Morocco
e-mail: Qotbis@gmail.com
Systèmes Dynamiques, A3D, Université Mohammed V-Rabat, 1014RP Rabat, Morocco
Abstract.
In this work, we give sufficient conditions ensuring the instability of a critical point of a homogeneous quadratic system in Rn using the multiplication of the corresponding non-associative algebra. This result generalizes a theorem of Zalar and Mencinger (see [5]). We also state a classification theorem giving the stability or the instability of any stationary point of a quadratic homogeneous system in R2. As expected, the second theorem in [5] is part of this classification.
2010 Mathematics Subject Classification.
34A34, 17A99.
Key words and phrases. Quadratic differential systems, Non-associative algebra, critical points, Stability, Nilpotent.
Full text (PDF) (free access)
DOI: 10.3336/gm.51.1.10
References:
- J. L. Kaplan and J. A. Yorke,
Nonassociative real algebras and quadratic differential equations,
Nonlinear Anal. 3 (1977), 49-51.
MathSciNet
CrossRef
- M. K. Kinyon and A. A. Sagle,
Quadratic dynamical systems and algebras,
J. Differential Equations 117 (1995), 67-126.
MathSciNet
CrossRef
- L. Markus,
Quadratic differential equations and non-associative algebras,
1960 Contributions to the theory of nonlinear oscillations, Vol. V, Princeton Univ. Press, Princeton, 1960, 185-213.
MathSciNet
- S. Walcher,
Algebras and differential equations, Hadronic Press, Palm Harbor, 1991.
MathSciNet
- B. Zalar and M. Mencinger,
On stability of critical points of quadratic differential equations in nonassociative algebras, Glas. Mat. Ser. III 38(58) (2003), 19-27.
MathSciNet
CrossRef
Glasnik Matematicki Home Page