Glasnik Matematicki, Vol. 51, No. 1 (2016), 153-163.

THE LANGLANDS QUOTIENT THEOREM FOR FINITE CENTRAL EXTENSIONS OF P-ADIC GROUPS II: INTERTWINING OPERATORS AND DUALITY

Dubravka Ban and Chris Jantzen

Department of Mathematics, Southern Illinois University, Carbondale, IL 62901 , USA
e-mail: dban@siu.edu

Department of Mathematics, East Carolina University, Greenville, NC 27858, USA
e-mail: jantzenc@ecu.edu


Abstract.   In this paper, we prove that the Langlands quotient may be realized as the image of a standard intertwining operator in the context of finite central extensions of connected, reductive p-adic groups. We also verify that the duality of Aubert and Schneider-Stuhler holds in this context

2010 Mathematics Subject Classification.   22E50, 11F70.

Key words and phrases.   Metaplectic groups; Langlands quotient theorem; p-adic groups.


Full text (PDF) (free access)

DOI: 10.3336/gm.51.1.09


References:

  1. A.-M. Aubert, Dualité dans le groupe de Grothendieck de la catégorie des représentations lisses de longueur finie d'un groupe réductif p-adique, Trans. Amer. Math. Soc. 347 (1995), 2179-2189.
    MathSciNet     CrossRef

  2. A.-M. Aubert, Erratum:``Dualité dans le groupe de Grothendieck de la catégorie des représentations lisses de longueur finie d'un groupe réductif p-adique", Trans. Amer. Math. Soc. 348 (1996), 4687-4690.
    MathSciNet     CrossRef

  3. D. Ban and C. Jantzen, The Langlands quotient theorem for finite central extensions of p-adic groups, Glas. Mat. Ser. III 48(68) (2013), 313-334.
    MathSciNet     CrossRef

  4. J. Bernstein, Representations of p-adic groups, Lectures, Harvard University, Fall 1992.

  5. J. Bernstein, P. Deligne and D. Kazhdan, Trace Paley-Wiener theorem for reductive p-adic groups, J. Analyse Math. 47 (1986), 180-192.
    MathSciNet     CrossRef

  6. I. Bernstein and A. Zelevinsky, Induced representations of reductive p-adic groups I, Ann. Sci. École Norm. Sup. 10 (1977), 441-472.
    MathSciNet     CrossRef

  7. W. Casselman, Introduction to the theory of admissible representations of p-adic reductive groups, preprint.

  8. Harish-Chandra, Harmonic analysis on reductive p-adic groups, Proceedings of Symposia in Pure Mathematics 26, Amer. Math. Soc., R.I., 1973, 167-192.
    MathSciNet    

  9. C. Jantzen, Some remarks on degenerate principal series, Pacific J. Math. 186 (1998), 67-87.
    MathSciNet     CrossRef

  10. W. Li, La formule des traces pour les revêtements de groupes réductifs connexes. II. Analyse harmonique locale., Ann. Sci. Éc. Norm. Supér. (4) 45 (2012), 787-859.
    MathSciNet    

  11. C. Mœglin and J.-L. Waldspurger, Spectral decomposition and Eisenstein series, Cambridge University Press, Cambridge, 1995.
    MathSciNet     CrossRef

  12. P. Schneider and U. Stuhler, Representation theory and sheaves on the Bruhat-Tits building, Inst. Hautes Études Sci. Publ. Math. No. 85 (1997), 97-191.
    MathSciNet     CrossRef    link

  13. A. Silberger, Introduction to harmonic analysis on reductive p-adic groups, Princeton University Press, Princeton, 1979.
    MathSciNet    

Glasnik Matematicki Home Page