Glasnik Matematicki, Vol. 51, No. 1 (2016), 117-123.

A NOTE ON AUTOMORPHISMS OF FINITE P-GROUPS

Gustavo A. Fernández-Alcober and Anitha Thillaisundaram

Department of Mathematics, University of the Basque Country UPV/EHU, 48080 Bilbao, Spain
e-mail: gustavo.fernandez@ehu.eus

Mathematisches Institut, Heinrich-Heine Universität, 40225 Düsseldorf, Germany
e-mail: anitha.t@cantab.net


Abstract.   Let G be a finite non-cyclic p-group of order at least p3. If G has an abelian maximal subgroup, or if G has an elementary abelian centre with CG(Z(φ(G))) ≠ φ(G), then |G| divides |Aut(G)|.

2010 Mathematics Subject Classification.   20D15, 20D45.

Key words and phrases.   Finite p-groups, automorphisms.


Full text (PDF) (access from subscribing institutions only)

DOI: 10.3336/gm.51.1.07


References:

  1. J. E. Adney and T. Yen, Automorphisms of a p-group, Illinois J. Math. 9 (1965), 137-143.
    MathSciNet     CrossRef

  2. M. Couson, On the character degrees and automorphism groups of finite p-groups by coclass, PhD Thesis, Technische Universität Braunschweig, Germany, 2013.

  3. M. Deaconescu and G. Silberberg, Noninner automorphisms of order p of finite p-groups, J. Algebra 250 (2002), 283-287.
    MathSciNet     CrossRef

  4. B. Eick, Automorphism groups of 2-groups, J. Algebra 300 (2006), 91-101.
    MathSciNet     CrosRef

  5. R. Faudree, A note on the automorphism group of a p-group, Proc. Amer. Math. Soc. 19 (1968), 1379-1382.
    MathSciNet     CrossRef

  6. W. Gaschütz, Nichtabelsche p-Gruppen besitzen äussere p-Automorphismen (German), J. Algebra 4 (1966), 1-2.
    MathSciNet     CrossRef

  7. J. González-Sánchez and A. Jaikin-Zaipirain, Finite p-groups with small automorphism group, Forum Math. Sigma 3 (2015), e7, 11 pp.
    MathSciNet     CrossRef

  8. K. G. Hummel, The order of the automorphism group of a central product, Proc. Amer. Math. Soc. 47 (1975), 37-40.
    MathSciNet     CrossRef

  9. I. M. Isaacs, Finite group theory, Amer. Math. Soc., Providence, 2008.
    MathSciNet     CrossRef

  10. O. Müller, On p-automorphisms of finite p-groups, Arch. Math. (Basel) 32 (1979), 533-538.
    MathSciNet     CrossRef

  11. A. D. Otto, Central automorphisms of a finite p-group, Trans. Amer. Math. Soc. 125 (1966), 280-287.
    MathSciNet     CrossRef

  12. A. Thillaisundaram, The automorphism group for p-central p-groups, Int. J. Group Theory 1 (2012), 59-71.
    MathSciNet    

  13. U. H. M. Webb, An elementary proof of Gaschütz' theorem, Arch. Math. (Basel) 35 (1980), 23-26.
    MathSciNet     CrossRef

  14. M. K. Yadav, On automorphisms of finite p-groups, J. Group Theory 10 (6) (2007), 859-866.
    MathSciNet     CrossRef

Glasnik Matematicki Home Page