Glasnik Matematicki, Vol. 51, No. 1 (2016), 59-108.

QUASI-PARTICLE BASES OF PRINCIPAL SUBSPACES FOR THE AFFINE LIE ALGEBRAS OF TYPES BL(1) AND CL(1)

Marijana Butorac

Department of Mathematics, University of Rijeka, Radmile Matejčić 2, 51 000 Rijeka, Croatia
e-mail: mbutorac@math.uniri.hr

Abstract.   Generalizing our earlier work, we construct quasi-particle bases of principal subspaces of standard module LXl(1)(kΛ0) and generalized Verma module NXl(1)(kΛ0) at level k≥ 1 in the case of affine Lie algebras of types Bl(1) and Cl(1). As a consequence, from quasi-particle bases, we obtain the graded dimensions of these subspaces.

2010 Mathematics Subject Classification.   17B67, 17B69, 05A19.

Key words and phrases.   Affine Lie algebras, vertex operator algebras, principal subspaces, quasi-particle bases.


Full text (PDF) (access from subscribing institutions only)

DOI: 10.3336/gm.51.1.05


References:

  1. G. E. Andrews, The theory of partitions, Addison-Wesley, Reading, Mass.-London-Amsterdam, 1976.
    MathSciNet    

  2. E. Ardonne, R. Kedem and M. Stone, Fermionic characters of arbitrary highest-weight integrable r+1-modules, Comm. Math. Phys. 264 (2006), 427-464.
    MathSciNet     CrossRef

  3. M. Butorac, Combinatorial bases of principal subspaces for the affine Lie algebra of type B2(1), J. Pure Appl. Algebra 218 (2014), 424-447.
    MathSciNet     CrossRef

  4. C. Calinescu, Intertwining vertex operators and certain representations of (n), Commun. Contemp. Math. 10 (2008), 47-79.
    MathSciNet     CrossRef

  5. C. Calinescu, Principal subspaces of higher-level standard (3)-modules, J. Pure Appl. Algebra 210 (2007), 559-575.
    MathSciNet     CrossRef

  6. C. Calinescu, J. Lepowsky and A. Milas, Vertex-algebraic structure of the principal subspaces of certain A(1)1-modules, I: level one case, Internat. J. Math. 19 (2008), 71-92.
    MathSciNet     CrossRef

  7. C. Calinescu, J. Lepowsky and A. Milas, Vertex-algebraic structure of the principal subspaces of certain A(1)1 -modules, II: higher-level case, J. Pure Appl. Algebra 212 (2008), 1928-1950.
    MathSciNet     CrossRef

  8. C. Calinescu, J. Lepowsky and A. Milas, Vertex-algebraic structure of the principal subspaces of level one modules for the untwisted affine Lie algebras of types A,D,E, J. Algebra 323 (2010), 167-192.
    MathSciNet     CrossRef

  9. C. Calinescu, J. Lepowsky and A. Milas, Vertex-algebraic structure of principal subspaces of standard A2(2)-modules, I, Internat. J. Math. 25 (2014), 1450063, 44 pp.
    MathSciNet     CrossRef

  10. S. Capparelli, J. Lepowsky and A. Milas,The Rogers-Ramanujan recursion and intertwining operators, Commun. Contemp. Math. 5 (2003), 947-966.
    MathSciNet     CrossRef

  11. S. Capparelli, J. Lepowsky and A. Milas, The Rogers-Selberg recursions, the Gordon-Andrews identities and intertwining operators, Ramanujan J. 12 (2006), 379-397.
    MathSciNet     CrossRef

  12. S. Dasmahapatra, R. Dedem, T. R. Klassen, B. McCoy and E. Melzer: Quasi-particles, conformal field theory and q-series, Internat. J. Modern Phys. B7 (1993), 3617-3648.
    MathSciNet     CrossRef

  13. C. Dong and J. Lepowsky, Generalized vertex algebras and relative vertex operators, Birkhäuser, Boston, 1993.
    MathSciNet     CrossRef

  14. C. Dong, H. Li and G. Mason, Simple currents and extensions of vertex operator algebras, Comm. Math. Phys. 180 (1996), 671-707.
    MathSciNet     CrossRef

  15. E. Feigin, The PBW filtration, Represent. Theory 13 (2009), 165-181.
    MathSciNet     CrossRef

  16. B. L. Feigin and A. V. Stoyanovsky, Functional models of the representations of current algebras, and semi-infinite Schubert cells, (Russian) Funktsional. Anal. i Prilozhen. 28 (1994), 68-90, 96; translation in Funct. Anal. Appl. 28 (1994), 55-72;
    MathSciNet     CrossRef

  17. I. B. Frenkel, Y.-Z. Huang and J. Lepowsky, On axiomatic approaches to vertex operator algebras and modules, Mem. Amer. Math. Soc. 104, 1993.
    MathSciNet     CrossRef

  18. B. Frenkel, J. Lepowsky and A. Meurman, Vertex operator algebras and the Monster, Academic Press, Boston, 1988.
    MathSciNet    

  19. G. Georgiev, Combinatorial constructions of modules for infinite-dimensional Lie algebras, I. Principal subspace, J. Pure Appl. Algebra 112 (1996), 247-286.
    MathSciNet     CrossRef

  20. J. E. Humphreys, Introduction to Lie algebras and representation theory, Springer-Verlag, Berlin-Heidelberg-New York, 1972.
    MathSciNet    

  21. M. Jerković and M. Primc, Quasi-particle fermionic formulas for (k, 3) -admissible configurations, Cent. Eur. J. Math. 10 (2012), 703-721.
    MathSciNet     CrossRef

  22. V. G. Kac, Infinite dimensional Lie algebras, 3rd ed., Cambridge University Press, Cambridge, 1990.
    MathSciNet     CrossRef

  23. S. Kožić, Principal subspaces for quantum affine algebra Uq(A(1)n), J. Pure Appl. Algebra 218 (2014), 2119-2148.
    MathSciNet     CrossRef

  24. S. Kožić and M. Primc, Quasi-particles in the principal picture of 2 and Rogers-Ramanujan-type identities, preprint.

  25. J. Lepowsky and H.-S. Li, Introduction to vertex operator algebras and their representations, Birkhäuser, Boston, 2004.
    MathSciNet     CrossRef

  26. J. Lepowsky and M. Primc, Structure of the standard modules for the affine Lie algebra A(1)1, American Mathematical Society, Providence, 1985.
    MathSciNet     CrossRef

  27. H.-S. Li, Local systems of vertex operators, vertex superalgebras and modules, J. Pure Appl. Algebra 109 (1996), 143-195.
    MathSciNet     CrossRef

  28. H.-S. Li, Certain extensions of vertex operator algebras of affine type, Commun. Math. Phys. 217 (2001), 653-696.
    MathSciNet     CrossRef

  29. A. Meurman and M. Primc, Annihilating fields of standard modules of (2, C) and combinatorial identities, Mem. Amer. Math. Soc. 137, (1999), 652, 89 pp.
    MathSciNet     CrossRef

  30. A. Milas and M. Penn, Lattice vertex algebras and combinatorial bases: general case and W-algebras, New York J. Math. 18 (2012), 621-650.
    MathSciNet     link

  31. C. Sadowski, Presentations of the principal subspaces of the higher-level standard (3)-modules, J. Pure Appl. Algebra 219 (2015) 2300-2345.
    MathSciNet     CrossRef

  32. C. Sadowski, Principal subspaces of higher-level standard (n)-modules; Internat. J. Math. 26 (2015), 1550053, 35 pp.
    MathSciNet     CrossRef

Glasnik Matematicki Home Page