Glasnik Matematicki, Vol. 51, No. 1 (2016), 17-22.

ON TWO DIOPHANTINE EQUATIONS OF RAMANUJAN-NAGELL TYPE

Zhongfeng Zhang and Alain Togbé

Zhaoqing University, China and Purdue University North Central, USA

Department of Mathematics, Purdue University North Central, 1401 S. U.S. 421 Westville IN 46391, USA
e-mail: atogbe@pnc.edu


Abstract.   In this paper, we prove two conjectures of Ulas ([21]) on two Diophantine equations of Ramanujan-Nagell type. In fact, we show that the following equations

x2+(2m+1+1)2n=24(m+1)+23(m+1)+22m+2m+1+1,
x2+(22m+6-1)2n/3 = (49 · 42m+5-11· 4m+3+1)/9

have exactly four solutions.

2010 Mathematics Subject Classification.   11D41.

Key words and phrases.   Diophantine equation.


Full text (PDF) (access from subscribing institutions only)

DOI: 10.3336/gm.51.1.02


References:

  1. F. S. Abu Muriefah and Y. Bugeaud, The Diophantine equation x 2+c=y n: a brief overview, Rev. Colombiana Mat. 40 (2006), 31-37.
    MathSciNet    

  2. R. Apéry, Sur une équation diophantienne, C. R. Acad. Sci. Paris, Sér. A 251 (1960), 1451-1452.
    MathSciNet    

  3. S. A. Arif and F. S. Abu Muriefah, The Diophantine equation x2+q2k=y n, Arab. J. Sci. Eng. Sect. A Sci. 26 (2001), 53-62.
    MathSciNet    

  4. M. Bauer, M. Bennett, Applications of the hypergeometric method to the generalized Ramanujan-Nagell equation. Ramanujan J. 6 (2002), 209-270.
    MathSciNet     CrossRef

  5. F. Beukers, On the generalized Ramanujan-Nagell equation I, Acta Arith. 38 (1980/1981), 389-410.
    MathSciNet    

  6. F. Beukers, On the generalized Ramanujan-Nagell equation II, Acta Arith. 39 (1981), 113-123.
    MathSciNet    

  7. Y. Bugeaud, M. Mignotte and S. Siksek, Classical and modular approaches to exponential Diophantine equations. II. The Lebesgue-Nagell equation, Compos. Math. 142 (2006), 31-62.
    MathSciNet     CrossRef

  8. Y. Bugeaud and T. N. Shorey, On the number of solutions of the generalized Ramanujan-Nagell equation, J. Reine Angew. math. 539 (2001), 55-74.
    MathSciNet     CrossRef

  9. J. H. E. Cohn, The Diophantine Equation x2+C=yn, Acta. Arith. 65 (1993), 367-381.
    MathSciNet    

  10. A. Y. Khinchin, Continued fractions, P. Noordhoff Ltd., Groningen, 1963, 3rd edition.

  11. C. Ko, On the Diophantine equation x2= yn +1, xy≠ 0, Sci. Sinica 14 (1965), 457-460.
    MathSciNet    

  12. M. Le, A note on the number of solutions of the generalized Ramanujan-Nagell equation x2 - D = kn, Acta Arith., 78 (1996), 11-18.
    MathSciNet    

  13. V. A. Lebesgue, Sur l'impossibilité en nombres entiers de l'équation xm = y2+1 Nouv. Annal. des Math. 9 (1850), 178-181.

  14. E. Goins, F. Luca, A. Togbé On the Diophantine equation x 2+2α · 5β · 13γ = yn, ANTS VIII Proceedings: A.J. van der Poorten and A. Stein (eds.), ANTS VIII, Lecture Notes in Computer Science 5011 (2008), 430-442.
    MathSciNet     CrossRef

  15. M. Mignotte and B. M. M. de Weger, On the Diophantine equations x2+74=y5 and x2+86=y5, Glasgow Math. J. 38 (1996), 77-85.
    MathSciNet     CrossRef

  16. T. Nagell, The Diophantine Equation x2+7=2n, Ark. Math. 4 (1961), 185-187.
    MathSciNet     CrossRef

  17. N. Tzanakis and J. Wolfskill, On the diophantine equation y2 = 4qn + 4q + 1, J. Number Theory 23 (1986), 219-237.
    MathSciNet     CrossRef

  18. N. Saradha and A. Srinivasan, Generalized Lebesgue-Ramanujan-Nagell equations, in: Diophantine equations, 207-223, Tata Inst. Fund. Res., Mumbai, 2008.
    MathSciNet    

  19. J. Stiller, The Diophantine equation x2 + 119 = 15 · 2n has exactly six solutions, Rocky Mountain J. Math. 26 (1996), 295-298.
    MathSciNet     CrossRef

  20. N. Tzanakis, On the Diophantine equation y2 - D = 2k, J. Number Theory 17 (1983), 144-164.
    MathSciNet     CrossRef

  21. M. Ulas, Some experiments with Ramanujan-Nagell type Diophantine equations, Glas. Mat. Ser. III 49 (2014), 287-302.
    MathSciNet     CrossRef

Glasnik Matematicki Home Page