Glasnik Matematicki, Vol. 50, No. 2 (2015), 289-332.
DEGENERATE EISENSTEIN SERIES FOR SYMPLECTIC GROUPS
Marcela Hanzer
Department of Mathematics, University of Zagreb,  10 000 Zagreb,  Croatia
e-mail: hanmar@math.hr
Abstract.  
In this paper we determine the poles (in the right half-plane) with their order of the degenerate Eisenstein series attached to the  representations induced from a character of the Siegel maximal parabolic subgroup of a symplectic group. We explicitly  determine the image of the Eisenstein series and thus determine an automorphic realization of certain irreducible global representations of Sp2n(AQ).
2010 Mathematics Subject Classification.  
11F70, 22E50.
Key words and phrases.   Automorphic representations, degenerate Eisenstein series, symplectic groups.
Full text (PDF) (free access)
DOI: 10.3336/gm.50.2.04
References:
- 
  J. Arthur,  The endoscopic classification of representations:
  orthogonal and symplectic groups,
  http://www.claymath.org/cw/arthur/pdf/Book.pdf.
 
- 
  J. Arthur, Intertwining
  operators and residues. I. Weighted characters, J. Funct. Anal. 84
  (1989),  19-84.
 MathSciNet    
CrossRef
 
- 
  J. Arthur, Intertwining
  operators and residues. II. Invariant distributions, Compositio Math.
  70 (1989),  51-99.
 MathSciNet    
CrossRef
 
- 
  J. Arthur, Unipotent
  automorphic representations: global motivation, in Automorphic forms,
  Shimura varieties, and L-functions, Vol. I (Ann Arbor, MI,
  1988),  Academic Press, Boston,   1990,
   1-75.
 MathSciNet
 
- 
  J. Arthur, An introduction to
  the trace formula, in Harmonic analysis, the trace formula, and Shimura
  varieties,  Amer. Math. Soc., Providence,
  2005,  1-263.
 MathSciNet
 
- 
  A.-M. Aubert, Dualité dans le groupe de Grothendieck de la
  catégorie des représentations lisses de longueur finie d'un groupe
  réductif p-adique, Trans. Amer. Math. Soc. 347 (1995),
   2179-2189.
 MathSciNet    
CrossRef
 
- 
  A. I. Badulescu and D. A. Renard, Sur une conjecture de Tadić,
  Glas. Mat. Ser. III 39(59) (2004),  49-54.
 MathSciNet    
CrossRef
 
- 
  D. Ban, Linear independence of intertwining operators, J. Algebra
  271 (2004),  749-767.
 MathSciNet    
CrossRef
 
- 
  A. Borel, Introduction to automorphic forms, in Algebraic groups
  and discontinuous subgroups, Amer. Math. Soc., Providence, 1966,  199-210.
 MathSciNet    
CrossRef
 
- 
  S. Gelbart, I. Piatetski-Shapiro and S. Rallis, Explicit
  constructions of automorphic L-functions,  Springer-Verlag, Berlin, 1987.
 
- 
  S. Gelbart and F. Shahidi,  Analytic properties of automorphic
  L-functions, Academic Press,
  Inc., Boston, 1987.
 MathSciNet
 
- 
  R. Gustafson, The degenerate principal series for Sp(2n),
  Mem. Amer. Math. Soc. 33 (1981),  vi+81.
 MathSciNet    
CrossRef
 
- 
  M. Hanzer and G. Muić, Degenerate Eisnestein series for
  Sp(4),  J. Number Theory  146 (2015), 310-342.
 MathSciNet    
CrossRef
 
- 
  M. Hanzer and G. Muić, On the images and
  poles of degenerate Eisenstein series for  GL(n,  A)  and $
  GL(n,  R)$,  Amer. J. Math. 137 (2015), 907-951.
 MathSciNet    
CrossRef
 
- 
  M. Hanzer and G. Muić, On an algebraic approach to the
  Zelevinsky classification for classical p-adic groups, J. Algebra 320
  (2008),  3206-3231.
 MathSciNet    
CrossRef
 
- 
  H. H. Kim, The residual spectrum of Sp4, Compositio
  Math. 99 (1995),  129-151.
 MathSciNet    
CrossRef
 
- 
  H. H. Kim and F. Shahidi, Quadratic unipotent Arthur parameters
  and residual spectrum of symplectic groups, Amer. J. Math. 118 (1996),
   401-425.
 MathSciNet    
CrossRef
 
- 
  S. S. Kudla and S. Rallis, Poles of Eisenstein series and
  L-functions, in Festschrift in honor of I. I. Piatetski-Shapiro
  on the occasion of his sixtieth birthday, Part II (Ramat Aviv, 1989), Weizmann, Jerusalem, 1990,  81-110.
 MathSciNet
 
- 
  S. S. Kudla and S. Rallis,  Ramified degenerate
  principal series representations for Sp(n), Israel J. Math. 78
  (1992),  209-256.
 MathSciNet    
CrossRef
 
- 
  S. S. Kudla and S. Rallis,  A regularized
  Siegel-Weil formula: the first term identity, Ann. of Math. (2) 140
  (1994),  1-80.
 MathSciNet    
CrossRef
 
- 
  S. T. Lee, Degenerate principal series representations of 
  Sp(2n,R), Compositio Math. 103 (1996),  123-151.
 MathSciNet    
CrossRef
 
- 
  C. M\oeglin and M. Tadić, Construction of discrete series for
  classical p-adic groups, J. Amer. Math. Soc. 15 (2002),  715-786
  (electronic).
 MathSciNet    
CrossRef
 
- 
  C. M\oeglin and J.-L. Waldspurger, Spectral decomposition and
  Eisenstein series,  Cambridge
  University Press, Cambridge, 1995.
 MathSciNet    
CrossRef
 
- 
  G. Muić, Composition series of generalized principal series; the
  case of strongly positive discrete series, Israel J. Math. 140 (2004),
   157-202.
 MathSciNet    
CrossRef
 
- 
  G. Muić, On certain classes
  of unitary representations for split classical groups, Canad. J. Math. 59
  (2007),  148-185.
 MathSciNet    
CrossRef
 
- 
  G. Muić, Some applications of
  degenerate Eisenstein series on Sp2n, J. Ramanujan Math.
  Soc. 23 (2008),  223-257.
 MathSciNet
 
- 
  G. Muić, Intertwining
  operators and composition series of generalized and degenerate principal
  series for  Sp(4,  R), Glas. Mat. Ser. III 44(64) (2009),
   349-399.
 MathSciNet    
CrossRef
 
- 
  I. Piatetski-Shapiro and S. Rallis, Rankin triple L functions,
  Compositio Math. 64 (1987),  31-115.
 MathSciNet    
CrossRef
 
- 
  A. Selberg, Harmonic analysis and discontinuous groups in weakly
  symmetric Riemannian spaces with applications to Dirichlet series, J.
  Indian Math. Soc. (N.S.) 20 (1956),  47-87.
 MathSciNet
 
- 
  A. Selberg, Discontinuous groups and harmonic analysis, in Proc.
  Internat. Congr. Mathematicians (Stockholm, 1962), Inst.
  Mittag-Leffler, Djursholm, 1963,  177-189.
 MathSciNet
 
- 
  F. Shahidi, A proof of Langlands' conjecture on Plancherel
  measures; complementary series for p-adic groups, Ann. of Math. (2) 132
  (1990),  273-330.
 MathSciNet    
CrossRef
 
- 
  F. Shahidi, Twisted endoscopy
  and reducibility of induced representations for p-adic groups, Duke
  Math. J. 66 (1992),  1-41.
 MathSciNet    
CrossRef
 
- 
  B. Speh, Unitary representations of Gl(n, R) with
  nontrivial (g,K)-cohomology, Invent. Math. 71 (1983),  443-465.
 MathSciNet    
CrossRef
 
- 
  W. J. Sweet, Jr., A computation of the gamma matrix of a family of
  p-adic zeta integrals, J. Number Theory 55 (1995),  222-260.
 MathSciNet    
CrossRef
 
- 
  M. Tadić, Induced representations of GL(n,A) for
  p-adic division algebras A, J. Reine Angew. Math. 405 (1990),
   48-77.
 MathSciNet    
CrossRef
 
- 
  M. Tadić, Structure arising
  from induction and Jacquet modules of representations of classical
  p-adic groups, J. Algebra 177 (1995),  1-33.
 MathSciNet    
CrossRef
 
- 
  M. Tadić, On reducibility of
  parabolic induction, Israel J. Math. 107 (1998),  29-91.
 MathSciNet    
CrossRef
Glasnik Matematicki Home Page