Glasnik Matematicki, Vol. 50, No. 1 (2015), 245-259.

STRONG CONVERGENCE FOR m-PAIRWISE NEGATIVELY QUADRANT DEPENDENT RANDOM VARIABLES

Yongfeng Wu and Andrew Rosalsky

College of Mathematics and Computer Science, Tongling University, 244000 Tongling, China, and, Center for Financial Engineering and School of Mathematical Sciences, Soochow University, 215006 Suzhou, China
e-mail: wyfwyf@126.com

Department of Statistics, University of Florida, Gainesville, FL 32611, USA
e-mail: rosalsky@stat.ufl.edu


Abstract.   Complete convergence and the Marcinkiewicz-Zygmund strong law of large numbers for sequences of m-pairwise negatively quadrant dependent (m-PNQD) random variables is studied in this paper. The results obtained extend and improve the corresponding theorems of Choi and Sung ([4]) and Hu et al. ([9]). A version of the Kolmogorov strong law of large numbers for sequences of m-PNQD random variables is also obtained.

2010 Mathematics Subject Classification.   60F15.

Key words and phrases.   m-pairwise negatively quadrant dependent random variables, complete convergence, strong law of large numbers.


Full text (PDF) (access from subscribing institutions only)

DOI: 10.3336/gm.50.1.15


References:

  1. A. Adler, A. Rosalsky and R. L. Taylor, Some strong laws of large numbers for sums of random elements, Bull. Inst. Math. Acad. Sinica 20 (1992), 335-357.
    MathSciNet    

  2. V. T. N. Anh, A strong limit theorem for sequences of blockwise and pairwise negative quadrant m-dependent random variables, Bull. Malays. Math. Sci. Soc. (2) 36 (2013), 159-164.
    MathSciNet    

  3. T. K. Chandra and A. Goswami, Cesàro uniform integrability and the strong law of large numbers, Sankhya Ser. A 54 (1992), 215-231.
    MathSciNet    

  4. B. D. Choi and S. H. Sung, On convergence of (Sn-ESn)/n1/r, 1 < r < 2, for pairwise independent random variables, Bull. Korean Math. Soc. 22 (1985), 79-82.
    MathSciNet    

  5. W. Feller, An introduction to probability theory and its applications. Vol. II, 2nd ed., John Wiley, New York, 1971.
    MathSciNet    

  6. S. Gan and P. Chen, Some limit theorems for sequences of pairwise NQD random variables, Acta Math. Sci. Ser. B Engl. Ed. 28 (2008), 269-281.
    MathSciNet     CrossRef

  7. M. Y. Gerasimov, The strong law of large numbers for pairwise negatively dependent random variables, Vestnik Moskov. Univ. Ser. XV Vychisl. Mat. Kibernet. 2009 (2009), 7-13 (in Russian). English translation in: Moscow Univ. Comput. Math. Cybernet. 33 (2009), 51-58.
    MathSciNet     CrossRef

  8. P. L. Hsu and H. Robbins, Complete convergence and the law of large numbers, Proc. Nat. Acad. Sci. U. S. A. 33 (1947), 25-31.
    MathSciNet     CrossRef

  9. S. Hu, X. Liu, X. Wang and X. Li, Strong law of large numbers of partial sums for pairwise NQD sequences, J. Math. Res. Appl. 33 (2013), 111-116.
    MathSciNet    

  10. T.-S. Kim and H.-C. Kim, On the weak law of large numbers for weighted sums of pairwise negative quadrant dependent random variables, Int. J. Math. Game Theory Algebra 10 (2000), 473-482.
    MathSciNet    

  11. T.-S. Kim and H.-C. Kim, On the law of large numbers for weighted sums of pairwise negatively quadrant dependent random variables, Bull. Korean Math. Soc. 38 (2001), 55-63.
    MathSciNet    

  12. E. L. Lehmann, Some concepts of dependence, Ann. Math. Statist. 37 (1966), 1137-1153.
    MathSciNet     CrossRef

  13. D. Li, A. Rosalsky and A. I. Volodin, On the strong law of large numbers for sequences of pairwise negative quadrant dependent random variables, Bull. Inst. Math. Acad. Sin. (N.S.) 1 (2006), 281-305.
    MathSciNet    

  14. R. Li and W. Yang, Strong convergence of pairwise NQD random sequences, J. Math. Anal. Appl. 344 (2008), 741-747.
    MathSciNet     CrossRef

  15. A. Martikainen, On the strong law of large numbers for sums of pairwise independent random variables, Statist. Probab. Lett. 25 (1995), 21-26.
    MathSciNet     CrossRef

  16. P. Matula, A note on the almost sure convergence of sums of negatively dependent random variables, Statist. Probab. Lett. 15 (1992), 209-213.
    MathSciNet     CrossRef

  17. Y. Meng and Z. Lin, On the weak laws of large numbers for arrays of random variables, Statist. Probab. Lett. 79 (2009), 2405-2414.
    MathSciNet     CrossRef

  18. M. Ordóñez Cabrera and A. Volodin, Mean convergence theorems and weak laws of large numbers for weighted sums of random variables under a condition of weighted integrability, J. Math. Anal. Appl. 305 (2005), 644-658.
    MathSciNet     CrossRef

  19. R. F. Patterson and R. L. Taylor, Strong laws of large numbers for negatively dependent random elements, Nonlinear Anal. 30 (1997), 4229-4235.
    MathSciNet     CrossRef

  20. R. Pemantle, Towards a theory of negative dependence, J. Math. Phys. 41 (2000), 1371-1390.
    MathSciNet     CrossRef

  21. Y. C. Qi, Limit theorems for sums and maxima of pairwise negative quadrant dependent random variables, Systems Sci. Math. Sci. 8 (1995), 249-253.
    MathSciNet    

  22. S. H. Sung, Convergence in r-mean of weighted sums of NQD random variables, Appl. Math. Lett. 26 (2013), 18-24.
    MathSciNet     CrossRef

  23. S. H. Sung, Marcinkiewicz-Zygmund type strong law of large numbers for pairwise i.i.d. random variables, J. Theor. Probab. 27 (2014), 96-106.
    MathSciNet     CrossRef

  24. R. L. Taylor, Stochastic convergence of weighted sums of random elements in linear spaces, Springer-Verlag, Berlin, 1978.
    MathSciNet    

  25. R. L. Taylor, R. F. Patterson and A. Bozorgnia, A strong law of large numbers for arrays of rowwise negatively dependent random variables, Stochastic Anal. Appl. 20 (2002), 643-656.
    MathSciNet     CrossRef

  26. D. Wei and R. L. Taylor, Convergence of weighted sums of tight random elements, J. Multivariate Anal. 8 (1978), 282-294.
    MathSciNet     CrossRef

  27. Q. Y. Wu, Convergence properties of pairwise NQD random sequences, Acta Math. Sinica (Chin. Ser.) 45 (2002), 617-624, in Chinese.
    MathSciNet    

  28. Q. Wu and Y. Jiang, The strong law of large numbers for pairwise NQD random variables, J. Syst. Sci. Complex. 24 (2011), 347-357.
    MathSciNet     CrossRef

  29. Y. Wu and M. Guan, Mean convergence theorems and weak laws of large numbers for weighted sums of dependent random variables, J. Math. Anal. Appl. 377 (2011), 613-623.
    MathSciNet     CrossRef

  30. Y. Wu and D. Wang, Convergence properties for arrays of rowwise pairwise negatively quadrant dependent random variables, Appl. Math. 57 (2012), 463-476.
    MathSciNet     CrossRef

  31. G.-D. Xing, On the almost sure convergence rates for pairwise negative quadrant dependent random variables, Thai J. Math. 8 (2010), 171-184.
    MathSciNet    

Glasnik Matematicki Home Page