Glasnik Matematicki, Vol. 50, No. 1 (2015), 207-221.

MINIMAL SURFACES IN SL(2,R) GEOMETRY

Zlatko Erjavec

Faculty of Organization and Informatics, University of Zagreb, Pavlinska 2, HR-42000 Varaždin, Croatia
e-mail: zlatko.erjavec@foi.hr


Abstract.   In this paper some geometric properties of SL(2,R) geometry are considered, the minimal surface equation is derived and fundamental examples of minimal surfaces are given.

2010 Mathematics Subject Classification.   53A40.

Key words and phrases.   SL(2,R) geometry, minimal surfaces.


Full text (PDF) (access from subscribing institutions only)

DOI: 10.3336/gm.50.1.12


References:

  1. M. Bekkar and H. Zoubir, Minimal surfaces of the 3-dimensional Lorentz-Heisenberg space, Int. J. Math. Anal. (Ruse) 3 (2009), 473-482.
    MathSciNet    

  2. M. Belkhelfa, Parallel and minimal surfaces in Heisenberg space, in Summer School on Differential Geometry, Universidade de Coimbra, Coimbra, 1999, 67-76.
    MathSciNet    

  3. B. Divjak, Z. Erjavec, B. Szabolcs and B. Szilágyi, Geodesics and geodesic spheres in SL(2,R) geometry, Math. Commun. 14 (2009), 413-424.
    MathSciNet    

  4. J. Inoguchi, T. Kumamoto, N. Ohsugi and Y. Suyama, Differential geometry of curves and surfaces in 3-dimensional homogeneous spaces. I, Fukuoka Univ. Sci. Rep. 29 (1999), 155-182.
    MathSciNet    

  5. J. Inoguchi, Minimal surfaces in 3-dimensional solvable Lie groups. II, Bull. Austral. Math. Soc. 73 (2006), 365-374.
    MathSciNet     CrossRef

  6. J. Inoguchi, Minimal surfaces in the 3-dimensional Heisenberg group, Diff. Geom. Dyn. Syst. 10 (2008), 163-169.
    MathSciNet    

  7. M. Kokubu, On minimal surfaces in the real special linear group SL(2,R), Tokyo J. Math. 20 (1997), 287-297.
    MathSciNet     CrossRef

  8. L. A. Masaltsev, Minimal surfaces in standard three-dimensional geometry Sol3, Zh. Mat. Fiz. Anal. Geom. 2 (2006), 104-110.
    MathSciNet    

  9. E. Molnár, The projective interpretation of the eight 3-dimensional homogeneous geometries, Beiträge Algebra Geom. 38 (1997), 261-288.
    MathSciNet    

  10. E. Molnár, On Nil geometry, Period. Polytech. Mech. Engrg. 47 (2003), 41-49.
    MathSciNet    

  11. E. Molnár and J. Szirmai, Symmetries in the 8 homogeneous 3-geometries, Symmetry: Culture and Science 21 (2010), 87-117.

  12. E. Molnár and B. Szilágyi, Translation curves and their spheres in homogeneous geometries, Publ. Math. Debrecen 78 (2011), 327-346.
    MathSciNet     CrossRef

  13. E. Molnár and J. Szirmai, Volumes and geodesic ball packings to the regular prism tilings in SL(2,R) space, Publ. Math. Debrecen 84 (2014), 189-203.
    MathSciNet    

  14. E. Molnár, J. Szirmai and A. Vesnin, Packings by translation balls in SL(2,R), J. Geom. 105 (2014), 287-306.
    MathSciNet     CrossRef

  15. R. Osserman, A survey of minimal surfaces, Van Nostrand Reinhold Co., New York-London-Melbourne, 1969.
    MathSciNet    

  16. P. Scott, The geometries of 3-manifolds, Bull. London Math. Soc. 15 (1983), 401-487.
    MathSciNet     CrossRef

  17. J. Szirmai, Regular prism tilings in SL(2,R) space, Aequationes Math. 88 (2014), 67-79.
    MathSciNet     CrossRef

Glasnik Matematicki Home Page