Glasnik Matematicki, Vol. 50, No. 1 (2015), 193-205.

ON QUASI-GREEDY BASES ASSOCIATED WITH UNITARY REPRESENTATIONS OF COUNTABLE GROUPS

Morten Nielsen

Department of Mathematical Sciences, Aalborg University , DK-9220 Aalborg, Denmark
e-mail: mnielsen@math.aau.dk


Abstract.   We consider the natural generating system for a cyclic subspace of a Hilbert space generated by a dual integrable unitary representation of a countable abelian group. We prove, under mild hypothesis, that whenever the generating system is a quasi-greedy basis it must also be an unconditional Riesz basis. A number of applications to Gabor systems and to general Vilenkin systems are considered. In particular, we show that any Gabor Schauder basis that also forms a quasi-greedy system in L2 is in fact a Riesz basis, and therefore satisfies the classical Balian-Low theorem.

2010 Mathematics Subject Classification.   42C10, 41A45.

Key words and phrases.   Quasi-greedy bases, dual integrable representation, Gabor systems, integer translates, Vilenkin system.


Full text (PDF) (free access)

DOI: 10.3336/gm.50.1.11


References:

  1. I. Daubechies, Ten lectures on wavelets, SIAM, Philadelphia, 1992.
    MathSciNet     CrossRef

  2. C. de Boor, R. A. DeVore and A. Ron, Approximation orders of FSI spaces in L2(Rd), Constr. Approx. 14 (1998), 631-652.
    MathSciNet     CrossRef

  3. G. B. Folland, A course in abstract harmonic analysis, CRC Press, Boca Raton, 1995.
    MathSciNet    

  4. G. Gát, Some convergence and divergence results with respect to summation of Fourier series on one and two-dimensional unbounded Vilenkin groups, Ann. Univ. Sci. Budapest. Sect. Comput. 33 (2010), 157-173.
    MathSciNet    

  5. K. Gröchenig, Foundations of time-frequency analysis, Birkhäuser Boston Inc., Boston, 2001.
    MathSciNet     CrossRef

  6. K. Gröchenig and S. Samarah, Nonlinear approximation with local Fourier bases, Constr. Approx. 16 (2000), 317-331.
    MathSciNet     CrossRef

  7. C. Heil and A. M. Powell, Gabor Schauder bases and the Balian-Low theorem, J. Math. Phys. 47 (2006), 113506, 21 pp.
    MathSciNet     CrossRef

  8. E. Hernández, M. Nielsen, H. Šikić and F. Soria, Democratic systems of translates, J. Approx. Theory 171 (2013), 105-127.
    MathSciNet     CrossRef

  9. E. Hernández, H. Šikić, G. Weiss and E. Wilson, Cyclic subspaces for unitary representations of LCA groups; generalized Zak transform, Colloq. Math. 118 (2010), 313-332.
    MathSciNet     CrossRef

  10. S. V. Konyagin and V. N. Temlyakov, A remark on greedy approximation in Banach spaces, East J. Approx. 5 (1999), 365-379.
    MathSciNet    

  11. K. Moen, Multiparameter weights with connections to Schauder bases, J. Math. Anal. Appl. 371 (2010), 266-281.
    MathSciNet     CrossRef

  12. M. Nielsen. On stability of finitely generated shift-invariant systems, J. Fourier Anal. Appl. 16 (2010), 901-920.
    MathSciNet     CrossRef

  13. M. Nielsen and H. Šikić, Quasi-greedy systems of integer translates, J. Approx. Theory 155 (2008), 43-51.
    MathSciNet     CrossRef

  14. M. Nielsen and H. Šikić, Schauder bases of integer translates, Appl. Comput. Harmon. Anal. 23 (2007), 259-262.
    MathSciNet     CrossRef

  15. F. Schipp, W. R. Wade and P. Simon, Walsh series. An introduction to dyadic harmonic analysis, With the collaboration of J. Pál, Adam Hilger Ltd., Bristol, 1990.
    MathSciNet    

  16. P. Wojtaszczyk, Banach spaces for analysts, Cambridge University Press, Cambridge, 1991.
    MathSciNet     CrossRef

  17. P. Wojtaszczyk, Greedy algorithm for general biorthogonal systems, J. Approx. Theory 107 (2000), 293-314.
    MathSciNet     CrossRef

Glasnik Matematicki Home Page