Glasnik Matematicki, Vol. 50, No. 1 (2015), 193-205.
ON QUASI-GREEDY BASES ASSOCIATED WITH UNITARY REPRESENTATIONS OF COUNTABLE GROUPS
Morten Nielsen
Department of Mathematical Sciences, Aalborg University , DK-9220 Aalborg, Denmark
e-mail: mnielsen@math.aau.dk
Abstract.
We consider the natural generating system for a cyclic subspace of a Hilbert space generated by a dual integrable unitary representation of a countable abelian group.
We prove, under mild hypothesis, that whenever the generating system is a quasi-greedy basis it must also be an unconditional Riesz basis.
A number of applications to Gabor systems and to general Vilenkin systems are considered. In particular, we show that any Gabor Schauder basis that also forms a quasi-greedy system in L2 is in fact a Riesz basis, and therefore satisfies the classical Balian-Low theorem.
2010 Mathematics Subject Classification.
42C10, 41A45.
Key words and phrases. Quasi-greedy bases, dual integrable representation, Gabor systems, integer translates, Vilenkin system.
Full text (PDF) (free access)
DOI: 10.3336/gm.50.1.11
References:
-
I. Daubechies,
Ten lectures on wavelets,
SIAM, Philadelphia, 1992.
MathSciNet
CrossRef
-
C. de Boor, R. A. DeVore and A. Ron,
Approximation orders of FSI spaces in L2(Rd),
Constr. Approx. 14 (1998), 631-652.
MathSciNet
CrossRef
-
G. B. Folland,
A course in abstract harmonic analysis,
CRC Press, Boca Raton, 1995.
MathSciNet
-
G. Gát,
Some convergence and divergence results with respect to summation of
Fourier series on one and two-dimensional unbounded Vilenkin groups,
Ann. Univ. Sci. Budapest. Sect. Comput. 33 (2010), 157-173.
MathSciNet
-
K. Gröchenig,
Foundations of time-frequency analysis,
Birkhäuser Boston Inc.,
Boston, 2001.
MathSciNet
CrossRef
-
K. Gröchenig and S. Samarah,
Nonlinear approximation with local Fourier bases,
Constr. Approx. 16 (2000), 317-331.
MathSciNet
CrossRef
-
C. Heil and A. M. Powell,
Gabor Schauder bases and the Balian-Low theorem,
J. Math. Phys. 47 (2006), 113506, 21 pp.
MathSciNet
CrossRef
-
E. Hernández, M. Nielsen, H. Šikić and F. Soria,
Democratic systems of translates,
J. Approx. Theory 171 (2013), 105-127.
MathSciNet
CrossRef
-
E. Hernández, H. Šikić, G. Weiss and E. Wilson,
Cyclic subspaces for unitary representations of LCA groups;
generalized Zak transform,
Colloq. Math. 118 (2010), 313-332.
MathSciNet
CrossRef
-
S. V. Konyagin and V. N. Temlyakov,
A remark on greedy approximation in Banach spaces,
East J. Approx. 5 (1999), 365-379.
MathSciNet
-
K. Moen,
Multiparameter weights with connections to Schauder bases,
J. Math. Anal. Appl. 371 (2010), 266-281.
MathSciNet
CrossRef
-
M. Nielsen.
On stability of finitely generated shift-invariant systems,
J. Fourier Anal. Appl. 16 (2010), 901-920.
MathSciNet
CrossRef
-
M. Nielsen and H. Šikić,
Quasi-greedy systems of integer translates,
J. Approx. Theory 155 (2008), 43-51.
MathSciNet
CrossRef
-
M. Nielsen and H. Šikić,
Schauder bases of integer translates,
Appl. Comput. Harmon. Anal. 23 (2007), 259-262.
MathSciNet
CrossRef
-
F. Schipp, W. R. Wade and P. Simon,
Walsh series. An introduction to dyadic harmonic analysis, With the collaboration
of J. Pál,
Adam Hilger Ltd., Bristol, 1990.
MathSciNet
-
P. Wojtaszczyk,
Banach spaces for analysts,
Cambridge University Press, Cambridge, 1991.
MathSciNet
CrossRef
-
P. Wojtaszczyk,
Greedy algorithm for general biorthogonal systems,
J. Approx. Theory 107 (2000), 293-314.
MathSciNet
CrossRef
Glasnik Matematicki Home Page