Glasnik Matematicki, Vol. 50, No. 1 (2015), 1-15.
PRIMITIVE BLOCK DESIGNS WITH AUTOMORPHISM GROUP PSL(2,Q)
Snježana Braić, Joško Mandić and Tanja Vučičić
Department of Mathematics,
University of Split,
Teslina 12/III, 21000 Split,
Croatia
e-mail: sbraic@pmfst.hr
Department of Mathematics,
University of Split,
Teslina 12/III, 21000 Split,
Croatia
e-mail: majo@pmfst.hr
Department of Mathematics,
University of Split,
Teslina 12/III, 21000 Split,
Croatia
e-mail: vucicic@pmfst.hr
Abstract.
We present the results of a research which aims to determine, up to
isomorphism and complementation, all primitive block designs with the
projective line Fq∪{∞} as the set of points and PSL(2,q) as an automorphism group. The obtained designs are classified by
the type of a block stabilizer. The results are complete, except for the
designs with block stabilizers in the fifth Aschbacher's class. In particular,
the problem is solved if q is a prime. We include formulas for the number of
such designs with q=p2α3β, α,β nonnegative integers.
2010 Mathematics Subject Classification.
05B05.
Key words and phrases. Block design, automorphism group, primitive action.
Full text (PDF) (free access)
DOI: 10.3336/gm.50.1.01
References:
- M. Aschbacher, Finite group theory, Cambridge University Press, Cambridge,
2000.
MathSciNet
CrossRef
- T. Beth, D. Jungnickel and H. Lenz, Design theory, Cambridge
University Press, 1999.
MathSciNet
MathSciNet
CrossRef
CrossRef
- W. Bosma, J. J. Cannon, C. Fieker, A. Steel (eds.),
Handbook of Magma functions, Edition 2.16, 2010.
- P. J. Cameron, Permutation groups, Cambridge University
Press, 1999.
MathSciNet
CrossRef
- P. J. Cameron, H. R. Maimani, G. R. Omidi and B. Tayfeh-Rezaie, 3-designs from PSL(2,q),
Discrete Math. 306 (2006), 3063-3073.
MathSciNet
CrossRef
- P. J. Cameron, G. R. Omidi and B. Tayfeh-Rezaie, 3-designs from PGL(2,q),
Electron. J. Combin. 13 (2006), Research Paper 50, 11 pp.
MathSciNet
CrossRef
- C. J. Colbourn and J. H. Dinitz, Eds., Handbook of combinatorial
designs, CRC Press, Boca Raton, 2007.
MathSciNet
- J. D. Dixon and B. Mortimer, Permutation groups,
Springer, New York, 1996.
MathSciNet
CrossRef
- The GAP Group, GAP - groups, algorithms, and programming,
version 4.4; Aachen, St. Andrews, 2006 (http://www.gap-system.org).
- M. Giudici, Maximal subgroups of almost simple groups
with socle PSL(2,q), arXiv:math/0703685v1 [math.GR], 2007.
- P. Kleidman and M. Liebeck, The subgroup structure of the
finite classical groups, Cambridge University Press, Cambridge, 1990.
MathSciNet
CrossRef
- R. Laue, Solving isomorphism problems for t-designs,
in Designs 2002, 277-300, ed. W. D. Wallis, Kluwer Academic Publishers, Boston, 2003.
MathSciNet
- M. W. Liebeck, C. E. Praeger and J. Saxl, On
the O'Nan-Scott theorem for finite primitive permutation groups, J. Austral. Math. Soc. Ser. A 44 (1988), 389-396.
MathSciNet
- M. W. Liebeck, C. E. Praeger and J. Saxl,
A classification of the maximal subgroups of the finite alternating
and symmetric groups, J. Algebra 111 (1987), 365-383.
MathSciNet
CrossRef
- L. H. Soicher, The DESIGN package for GAP, Version 1.3, 2006, http://designtheory.org/software/gapdesign/.
Glasnik Matematicki Home Page