Glasnik Matematicki, Vol. 50, No. 1 (2015), 1-15.

PRIMITIVE BLOCK DESIGNS WITH AUTOMORPHISM GROUP PSL(2,Q)

Snježana Braić, Joško Mandić and Tanja Vučičić

Department of Mathematics, University of Split, Teslina 12/III, 21000 Split, Croatia
e-mail: sbraic@pmfst.hr

Department of Mathematics, University of Split, Teslina 12/III, 21000 Split, Croatia
e-mail: majo@pmfst.hr

Department of Mathematics, University of Split, Teslina 12/III, 21000 Split, Croatia
e-mail: vucicic@pmfst.hr


Abstract.   We present the results of a research which aims to determine, up to isomorphism and complementation, all primitive block designs with the projective line Fq∪{∞} as the set of points and PSL(2,q) as an automorphism group. The obtained designs are classified by the type of a block stabilizer. The results are complete, except for the designs with block stabilizers in the fifth Aschbacher's class. In particular, the problem is solved if q is a prime. We include formulas for the number of such designs with q=p2α3β, α,β nonnegative integers.

2010 Mathematics Subject Classification.   05B05.

Key words and phrases.   Block design, automorphism group, primitive action.


Full text (PDF) (free access)

DOI: 10.3336/gm.50.1.01


References:

  1. M. Aschbacher, Finite group theory, Cambridge University Press, Cambridge, 2000.
    MathSciNet     CrossRef

  2. T. Beth, D. Jungnickel and H. Lenz, Design theory, Cambridge University Press, 1999.
    MathSciNet     MathSciNet     CrossRef    CrossRef

  3. W. Bosma, J. J. Cannon, C. Fieker, A. Steel (eds.), Handbook of Magma functions, Edition 2.16, 2010.

  4. P. J. Cameron, Permutation groups, Cambridge University Press, 1999.
    MathSciNet     CrossRef

  5. P. J. Cameron, H. R. Maimani, G. R. Omidi and B. Tayfeh-Rezaie, 3-designs from PSL(2,q), Discrete Math. 306 (2006), 3063-3073.
    MathSciNet     CrossRef

  6. P. J. Cameron, G. R. Omidi and B. Tayfeh-Rezaie, 3-designs from PGL(2,q), Electron. J. Combin. 13 (2006), Research Paper 50, 11 pp.
    MathSciNet     CrossRef

  7. C. J. Colbourn and J. H. Dinitz, Eds., Handbook of combinatorial designs, CRC Press, Boca Raton, 2007.
    MathSciNet    

  8. J. D. Dixon and B. Mortimer, Permutation groups, Springer, New York, 1996.
    MathSciNet     CrossRef

  9. The GAP Group, GAP - groups, algorithms, and programming, version 4.4; Aachen, St. Andrews, 2006 (http://www.gap-system.org).

  10. M. Giudici, Maximal subgroups of almost simple groups with socle PSL(2,q), arXiv:math/0703685v1 [math.GR], 2007.

  11. P. Kleidman and M. Liebeck, The subgroup structure of the finite classical groups, Cambridge University Press, Cambridge, 1990.
    MathSciNet     CrossRef

  12. R. Laue, Solving isomorphism problems for t-designs, in Designs 2002, 277-300, ed. W. D. Wallis, Kluwer Academic Publishers, Boston, 2003.
    MathSciNet    

  13. M. W. Liebeck, C. E. Praeger and J. Saxl, On the O'Nan-Scott theorem for finite primitive permutation groups, J. Austral. Math. Soc. Ser. A 44 (1988), 389-396.
    MathSciNet    

  14. M. W. Liebeck, C. E. Praeger and J. Saxl, A classification of the maximal subgroups of the finite alternating and symmetric groups, J. Algebra 111 (1987), 365-383.
    MathSciNet     CrossRef

  15. L. H. Soicher, The DESIGN package for GAP, Version 1.3, 2006, http://designtheory.org/software/gapdesign/.

Glasnik Matematicki Home Page