Glasnik Matematicki, Vol. 49, No. 2 (2014), 235-262.

SOME IRREDUCIBLE 2-MODULAR CODES INVARIANT UNDER THE SYMPLECTIC GROUP S6(2)

Lucy Chikamai, Jamshid Moori and Bernardo G. Rodrigues

School of Mathematics, Statistics and Computer Science , University of KwaZulu-Natal , Durban 4000, South Africa
e-mail: lucychikamai@gmail.com

School of Mathematical Sciences , North-West University (Mafikeng) , Mmabatho 2735, South Africa
e-mail: Jamshid.Moori@nwu.ac.za

School of Mathematics, Statistics and Computer Science , University of KwaZulu-Natal , Durban 4000, South Africa
e-mail: rodrigues@ukzn.ac.za


Abstract.   We examine all non-trivial binary codes and designs obtained from the 2-modular primitive permutation representations of degrees up to 135 of the simple projective special symplectic group S6(2). The submodule lattice of the permutation modules, together with a comprehensive description of each code including the weight enumerator, the automorphism group, and the action of S6(2) is given. By considering the structures of the stabilizers of several codewords we attempt to gain an insight into the nature of some classes of codewords in particular those of minimum weight.

2010 Mathematics Subject Classification.   05B05, 20D45, 94B05.

Key words and phrases.   Derived, symmetric and quasi-symmetric designs, self-orthogonal designs, codes, optimal linear code, automorphism group, modular representation, symplectic group.


Full text (PDF) (access from subscribing institutions only)

DOI: 10.3336/gm.49.2.01


References:

  1. Atlas of finite group representations - Version 3, http://brauer.maths.qmul.ac.uk/Atlas/clas/S62/.

  2. J. L. Alperin and R. B. Bell, Groups and representations, Springer-Verlag, New York Inc., 1995.
    MathSciNet     CrossRef

  3. E. F. Assmus, Jr and J. D. Key, Designs and their codes, Cambridge University Press, Cambridge, 1992.
    MathSciNet    

  4. W. Bosma, J. Cannon and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), 235-265.
    MathSciNet     CrossRef

  5. P. L. H. Brooke, On matrix representations and codes associated with the simple group of order 25920, J. Algebra 91 (1984), 536-566.
    MathSciNet     CrossRef

  6. P. L. H. Brooke, On the Steiner systems S(2,4,28) and codes associated with the simple group of order 6048. J. Algebra 97 (1985), 376-406.
    MathSciNet     CrossRef

  7. R. Calderbank and W. M. Kantor, The geometry of two-weight codes, Bull. London Math. Soc. 18 (1986), 97-122.
    MathSciNet     CrossRef

  8. P. J. Cameron and J. H. van Lint, Designs, graphs, codes and their links, Cambridge University Press, Cambridge, 1991.
    MathSciNet     CrossRef

  9. L. Chikamai, Linear codes obtained from 2-modular representations of some finite simple groups, PhD thesis, University of KwaZulu-Natal, 2013.

  10. L. Chikamai, J. Moori and B. G. Rodrigues, Some 2-modular codes preserved by the simple group L3(4), Util. Math. 95 (2014), 357-399.

  11. L. Chikamai, J. Moori and B. G. Rodrigues, 2-modular representations of the alternating group A8 as binary codes, Glas. Mat. Ser. III. 47(67) (2012), 225-252.
    MathSciNet     CrossRef

  12. J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, Atlas of finite groups, Oxford University Press, Oxford, 1985.

  13. D. Crnković and V. Mikulić Crnković, On some combinatorial structures constructed from the groups L(3,5), U(5,2) and S(6,2). Int. J. Comb. 237 (2011), Article ID 137356, 12 pages.
    MathSciNet     CrossRef

  14. S. M. Dodunekov, S. B. Encheva and S. N. Kapralov, On the [28, 7, 12] binary self-complementary codes and their residuals, Des. Codes Cryptogr. 4 (1994), 57-67.
    MathSciNet     CrossRef

  15. W. Fish, J. D. Key and E. Mwambene, Binary codes from reflexive graphs on 3-set, submitted.

  16. M. Grassl, Bounds on the minimum distance of linear codes and quantum codes, online available at http://www.codetables.de, 2007. Accessed on 05-08-2013.

  17. W. H. Haemers, R. Peeters, and J. M. van Rijckevorsel, Binary codes of strongly regular graphs, Des. Codes Cryptogr. 17 (1999), 187-209.
    MathSciNet     CrossRef

  18. R. Hill, A first course in coding theory, Oxford University Press, Oxford, 1986.
    MathSciNet    

  19. C. Jansen, K. Lux, R. Parker and R. Wilson, An atlas of Brauer characters, Oxford Scientific Publications, Clarendon Press, Oxford, 1995.
    MathSciNet    

  20. J. D. Key and J. Moori, Codes, designs and graphs from the Janko groups J1 and J2, J. Combin. Math. Combin. Comput. 40 (2002), 143-159.
    MathSciNet    

  21. C. Parker, E. Spence and V. D. Tonchev, Designs with the symmetric difference property on 64 points and their groups, J. Combin. Theory Ser. A 67 (1994), 23-43.
    MathSciNet     CrossRef

  22. R. Peeters, Uniqueness of strongly regular graphs having minimal p-rank, Linear Algebra Appl. 226/228 (1995), 9-31.
    MathSciNet     CrossRef

  23. J. Rotman, An introduction to the theory of groups, Springer-Verlag, New York, 1995.
    MathSciNet     CrossRef

  24. D. Seiple, Investigation of binary self-dual codes invariant under simple groups, MSc thesis, The University of Arizona, 2009.

  25. M. S. Shrikhande and S. S. Sane, Quasi-symmetric designs, Cambridge University Press, Cambridge, 1991.
    MathSciNet     CrossRef

  26. R. A. Wilson, The finite simple groups, Springer-Verlag London Ltd., London, 2009.
    MathSciNet     CrossRef

Glasnik Matematicki Home Page