Glasnik Matematicki, Vol. 49, No. 1 (2014), 1-12.

THE EDGE WIENER INDEX OF SUSPENSIONS, BOTTLENECKS, AND THORNY GRAPHS

Yaser Alizadeh, Ali Iranmanesh, Tomislav Došlić and Mahdieh Azari

Department of Mathematics, Hakim Sabzevari University, Sabzevar, Iran
e-mail: y.alizadeh@hsu.ac.ir

Department of Mathematics, Tarbiat Modares University, P. O. Box: 14115-137, Tehran, Iran
e-mail: iranmanesh@modares.ac.ir

Faculty of Civil Engineering, University of Zagreb, Kačićeva 26, 10000 Zagreb, Croatia
e-mail: doslic@grad.hr

Department of Mathematics, Kazerun Branch, Islamic Azad University, P. O. Box: 73135-168, Kazerun, Iran
e-mail: azari@kau.ac.ir


Abstract.   Let G be a simple connected graph. The distance between the edges g and f E(G) is defined as the distance between the corresponding vertices g and f in the line graph of G. The edge-Wiener index of G is defined as the sum of such distances between all pairs of edges of the graph. Let G1+G2 and G1ο G2 be the join and the corona of graphs G1 and G2, respectively. In this paper, we present explicit formulas for the edge-Wiener index for these graphs. Then we apply our results to compute the edge-Wiener index of suspensions, bottlenecks, and thorny graphs.

2010 Mathematics Subject Classification.   05C12, 05C76, 92E10.

Key words and phrases.   Distance, edge-Wiener index, join, corona.


Full text (PDF) (access from subscribing institutions only)

DOI: 10.3336/gm.49.1.01


References:

  1. M. Azari and A. Iranmanesh, Computation of the edge Wiener indices of the sum of graphs, Ars Combin. 100 (2011), 113-128.
    MathSciNet    

  2. M. Azari, A. Iranmanesh and A. Tehranian, A method for calculating an edge version of the Wiener number of a graph operation, Util. Math. 87 (2012), 151-164.
    MathSciNet    

  3. M. Azari, A. Iranmanesh and A. Tehranian, Computation of the first edge Wiener index of a composition of graphs, Studia Univ. Babes Bolyai Chem. 4 (2010), 183-196.

  4. M. Azari, A. Iranmanesh and A. Tehranian, Maximum and minimum polynomials of a composite graph, Austral. J. Basic Appl. Sci. 5(9) (2011), 825-830.

  5. M. Azari, A. Iranmanesh and A. Tehranian, Two topological indices of three chemical structures, MATCH Commun. Math. Comput. Chem. 69 (2013), 69-86.
    MathSciNet    

  6. P. Dankelmann, I. Gutman, S. Mukwembi and H. C. Swart, The edge Wiener index of a graph, Discrete Math. 309 (2009), 3452-3457.
    MathSciNet     CrossRef

  7. I. Gutman, A new method for the calculation of the Wiener number of acyclic molecules, J. Mol. Struct. (Theochem) 285 (1993), 137-142.
    CrossRef

  8. I. Gutman, Calculating the Wiener number: the Doyle-Graver method, J. Serb. Chem. Soc. 58 (1993), 745-750.

  9. I. Gutman and N. Trinajstić, Graph theory and molecular orbitals, Total π- electron energy of alternant hydrocarbons, Chem. Phys. Lett. 17 (1972), 535-538.
    CrossRef

  10. I. Gutman, Y. N. Yeh, S. L. Lee and Y. L. Luo, Some recent results in the theory of the Wiener number, Indian J. Chem. 32A (1993), 651-661.

  11. A. Iranmanesh, I. Gutman, O. Khormali and A. Mahmiani, The edge versions of Wiener index, MATCH Commun. Math. Comput. Chem. 61 (2009), 663-672.
    MathSciNet    

  12. M. Juvan, B. Mohar, A. Graovac, S. Klavžar and J. Žerovnik, Fast computation of the Wiener index of fasciagraphs and rotagraphs, J. Chem. Inf. Comput. Sci. 35 (1995), 834-840.
    CrossRef

  13. M. H. Khalifeh, H. Yousefi Azari, A. R. Ashrafi and S. G. Wagner, Some new results on distance-based graph invariants, European J. Combin. 30 (2009), 1149-1163.
    MathSciNet     CrossRef

  14. D. J. Klein, T. Došlić and D. Bonchev, Vertex-weightings for distance moments and thorny graphs, Discrete Appl. Math. 155 (2007), 2294-2302.
    MathSciNet     CrossRef

  15. H. Liu and X. F. Pan, On the Wiener index of trees with fixed diameter, MATCH Commun. Math. Comput. Chem. 60 (2008), 85-94.
    MathSciNet    

  16. A. Miličević and N. Trinajstić, Combinatorial enumeration in chemistry, in Chemical Modelling: Applications and Theory, RSC Publishing, Cambridge, 2006, 405-469.

  17. P. Senn, The computation of the distance matrix and the Wiener index for graphs of arbitrary complexity with weighted vertices and edges, Comput. Chem. 12 (1988), 219-227.
    CrossRef

  18. D. Stevanović, Maximizing Wiener index of graphs with fixed maximum degree, MATCH Commun. Math. Comput. Chem. 60 (2008), 71-83.
    MathSciNet    

  19. S. G. Wagner, A class of trees and its Wiener index, Acta Appl. Math. 91 (2006), 119-132.
    MathSciNet     CrossRef

  20. H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc. 69 (1947), 17-20.
    CrossRef

  21. Z. Yarahmadi, T. Došlić and A. R. Ashrafi, The bipartite edge frustration of composite graphs, Discrete Appl. Math. 158 (2010), 1551-1558.
    MathSciNet     CrossRef


Glasnik Matematicki Home Page