Department of Mathematics,
Faculty of Mathematical Sciences,
University of Mazandaran,
Babolsar, Iran

*e-mail:* `a.hadjian@umz.ac.ir`

**Abstract.** In this paper, using Ricceri's variational principle, we prove the
existence of infinitely many weak solutions for a Dirichlet doubly
eigenvalue boundary value problem.

**2010 Mathematics Subject Classification.**
34B15, 35B38, 58E05.

**Key words and phrases.** Doubly eigenvalue boundary value problem, Ricceri's
variational principle, infinitely many solutions.

DOI: 10.3336/gm.48.2.09

**References:**

- G.A. Afrouzi and A. Hadjian,
*Infinitely many solutions for a class of Dirichlet quasilinear elliptic systems*, J. Math. Anal. Appl.**393**(2012), 265-272.

MathSciNet CrossRef - G. Bonanno and G. D'Aguì,
*A Neumann boundary value problem for the Sturm-Liouville equation*, Appl. Math. Comput.**208**(2009), 318-327.

MathSciNet CrossRef - G. Bonanno and B. Di Bella,
*Infinitely many solutions for a fourth-order elastic beam equation*, NoDEA Nonlinear Differential Equations Appl.**18**(2011), 357-368.

MathSciNet CrossRef - G. Bonanno and G. Molica Bisci,
*Infinitely many solutions for a boundary value problem with discontinuous nonlinearities*, Bound. Value Probl.**2009**, 1-20.

MathSciNet - G. Bonanno and G. Molica Bisci,
*Infinitely many solutions for a Dirichlet problem involving the*, Proc. Royal Soc. Edinburgh Sect. A*p*-Laplacian**140**(2010), 737-752.

MathSciNet CrossRef - G. Bonanno, G. Molica Bisci and D. O'Regan,
*Infinitely many weak solutions for a class of quasilinear elliptic systems*, Math. Comput. Modelling**52**(2010), 152-160.

MathSciNet CrossRef - G. Bonanno, G. Molica Bisci and V. Rădulescu,
*Infinitely many solutions for a class of nonlinear eigenvalue problem in Orlicz-Sobolev spaces*, C. R. Math. Acad. Sci. Paris**349**(2011), 263-268.

MathSciNet CrossRef - G. Bonanno, G. Molica Bisci and V. Rădulescu,
*Infinitely many solutions for a class of nonlinear elliptic problems on fractals*, C. R. Math. Acad. Sci. Paris**350**(2012), 187-191.

MathSciNet CrossRef - G. Bonanno, G. Molica Bisci and V. Rădulescu,
*Arbitrarily small weak solutions for a nonlinear eigenvalue problem in Orlicz-Sobolev spaces*, Monatsh. Math.**165**(2012), 305-318.

MathSciNet CrossRef - G. Bonanno, G. Molica Bisci and V. Rădulescu,
*Variational analysis for a nonlinear elliptic problem on the Sierpiński gasket*, ESAIM Control Optim. Calc. Var.**18**(2012), 941-953.

MathSciNet CrossRef - G. Bonanno and E. Tornatore,
*Infinitely many solutions for a mixed boundary value problem*, Ann. Polon. Math.**99**(2010), 285-293.

MathSciNet CrossRef - P. Candito,
*Infinitely many solutions to the Neumann problem for elliptic equations involving the*Proc. Edin. Math. Soc.*p*-Laplacian and with discontinuous nonlinearities,**45**(2002), 397-409.

MathSciNet CrossRef - P. Candito, L. Li and R. Livrea,
*Infinitely many solutions for a perturbed nonlinear Navier boundary value problem involving the*, Nonlinear Anal.*p*-biharmonic**75**(2012), 6360-6369.

MathSciNet CrossRef - M. Ghergu and V. Rădulescu,
Singular elliptic problems: bifurcation and asymptotic
analysis, Oxford University Press, Oxford, 2008.

MathSciNet - J. R. Graef, S. Heidarkhani and L. Kong,
*Infinitely many solutions for systems of multi-point boundary value problems using variational methods*, Topol. Methods Nonlinear Anal.**42**(2013), 105-118. - S. Heidarkhani,
*Infinitely many solutions for systems of*, Ann. Polon. Math.*n*two-point Kirchhoff-type boundary value problems**107**(2013), 133-152.

MathSciNet CrossRef - S. Heidarkhani and J. Henderson,
*Infinitely many solutions for nonlocal elliptic systems of*, Electron. J. Differential Equations*(p*-Kirchhoff type_{1},...,p_{n})**2012**, 69, 1-15.

MathSciNet - S. Heidarkhani and D. Motreanu,
*Multiplicity results for a two-point boundary value problem*, Panamer. Math. J.**19**(2009), 69-78.

MathSciNet - A. Kristály, V. Rădulescu and C. Varga,
Variational principles in mathematical physics, geometry, and
economics: qualitative analysis of nonlinear equations and
unilateral problems, Cambridge University Press, Cambridge, 2010.

MathSciNet - B. Ricceri,
*A general variational principle and some of its applications*, J. Comput. Appl. Math.**113**(2000), 401-410.

MathSciNet CrossRef - G. Talenti,
*Some inequalities of Sobolev type on two-dimensional spheres*, in: W. Walter (Ed.), General Inequalities 5, Birkhäser, Basel, 1987, 401-408.

MathSciNet - E. Zeidler,
Nonlinear functional analysis and its applications, vol. II/B
and III, Springer-Verlag, New York, 1990.

MathSciNet CrossRef