Glasnik Matematicki, Vol. 48, No. 2 (2013), 301-312.

BIRATIONAL MAPS OF X(1) INTO P2

Damir Mikoč and Goran Muić

Department of Mathematics, University of Rijeka, Omladinska 14, HR-51000 Rijeka, Croatia
e-mail: damir.mikoc@gmail.com

Department of Mathematics, University of Zagreb, Bijenička 30, 10000 Zagreb, Croatia
e-mail: gmuic@math.hr


Abstract.   In this paper we study birational maps of modular curve X(1) attached to SL2(Z) into the projective plain P2. We prove that every curve of genus 0 and degree q in P2 can be uniformized by modular forms for SL2(Z) of weight 12q but not with modular forms of smaller weight, and that the corresponding uniformization can be chosen to be a birational equivalence. We study other regular maps X(1) → P2 and we compute the equation of obtained projective curve. We provide numerical examples in SAGE.

2010 Mathematics Subject Classification.   14H50, 11F11, 11F23.

Key words and phrases.   Modular forms, modular curves, birational equivalence.


Full text (PDF) (free access)

DOI: 10.3336/gm.48.2.06


References:

  1. R. Bröker, K. Lauter and A. V. Sutherland, Modular polynomials via isogeny volcanoes, Mathematics of Computation 81 (2012), 1201-1231.
    MathSciNet     CrossRef

  2. L. A. Borisov, P. E. Gunnells and S. Popescu, Elliptic functions and equations of modular curves, Math. Ann. 321 (2001), 553-568.
    MathSciNet     CrossRef

  3. B. Cho, N. M. Kim and J. K. Koo, Affine models of the modular curves X(p) and its application, Ramanujan J. 24 (2011), 235-257.
    MathSciNet     CrossRef

  4. H. M. Farkas and I. Kra, Theta constants, Riemann surfaces and the modular group, Amer. Math. Soc., Providence, 2001.
    MathSciNet    

  5. H. M. Farkas, Y. Kopeliovich and I. Kra, Uniformizations of modular curves, Comm. Anal. Geom. 4 (1996), 207-259. Corrigendum to: "Uniformizations of modular curves'', Comm. Anal. Geom. 4 (1996), 681.
    MathSciNet    

  6. S. Galbraith, Equations for modular curves, Ph.D. thesis, Oxford, 1996.

  7. R. Brooks and Y. Kopeliovich, Uniformization of some quotients of modular curves, in: Extremal Riemann surfaces (San Francisco, CA, 1995), Amer. Math. Soc., Providence, 1997, 155-164.
    MathSciNet     CrossRef

  8. T. Miyake, Modular forms, Springer-Verlag, 2006.
    MathSciNet    

  9. R. Miranda, Algebraic curves and Riemann surfaces, American Mathematical Society, Providence, 1995.
    MathSciNet    

  10. G. Muić, Modular curves and bases for the spaces of cuspidal modular forms, Ramanujan J. 27 (2012), 181-208.
    MathSciNet     CrossRef

  11. G. Muić, Integral models of X0(N) and their degrees, preprint, http://lanl.arxiv.org/abs/1305.2428.

  12. I. R. Shafarevich, Basic algebraic geometry. 2. Schemes and complex manifolds, Springer-Verlag, 1994.
    MathSciNet    

  13. G. Shimura, Introduction to the arithmetic theory of automorphic functions. Kanô Memorial Lectures, No. 1. Iwanami Shoten, Publishers, Tokyo; Princeton University Press, Princeton, 1971.
    MathSciNet    

  14. M. Shimura, Defining equations of modular curves X0(N), Tokyo J. Math. 18 (1995), 443-456.
    MathSciNet     CrossRef

  15. W. Stein, Modular forms, a computational approach, American Mathematical Society, 2007.
    MathSciNet    

  16. Y. Yifan, Defining equations of modular curves, Adv. Math. 204 (2006), 481-508.
    MathSciNet     CrossRef

Glasnik Matematicki Home Page